\rho_2(x,y) = n^2\left[1 - \left(\frac{\sin\left[k_\text{F}(x-y)\right]}{k_\text{F}(x-y)}\right)^2\right]
How to find this using second quantization?
What can these correlations tell us about interactions?
From Lecture 1: pair distribution function \rho_2(x_1,x_2) = N(N-1) \int dx_3\ldots dx_N \left|\Psi(x_1,x_2,\ldots,x_N)\right|^2 measures likelihood of finding particles at x_1 and x_2
For 1D Fermi gas ground state we found (Slater determinant, etc.) \rho_2(x,y) = n^2\left[1 - \left(\frac{\sin\left[k_\text{F}(x-y)\right]}{k_\text{F}(x-y)}\right)^2\right]
Let’s calculate using second quantization!
\rho_2(x,y) = N(N-1) \int dx_3\ldots dx_N \left|\Psi(x,y,\ldots,x_N)\right|^2
\begin{align*} \lvert{\Psi}\rangle&\longleftrightarrow \Psi(x_1,\ldots, x_N)\nonumber\\ \psi(X)\lvert{\Psi}\rangle&\longleftrightarrow \sqrt{N}\Psi(X,x_1,\ldots, x_{N-1})\\ \end{align*}
\rho_2(x,y) =\braket{\Psi|\psi^\dagger(x)\psi^\dagger(y)\psi^{\vphantom{\dagger}}(y)\psi^{\vphantom{\dagger}}(x)|\Psi}
\rho_2(x,y) =\braket{\Psi|\psi^\dagger(x)\psi^\dagger(y)\psi^{\vphantom{\dagger}}(y)\psi^{\vphantom{\dagger}}(x)|\Psi}
Operators in which all annihilation operators stand to the right of all creation operators are said to be normal ordered
Two particle terms in the Hamiltonian are normal ordered to prevent particle interacting with itself!
\rho_2(x,y) =\braket{\Psi|\psi^\dagger(x)\psi^\dagger(y)\psi^{\vphantom{\dagger}}(y)\psi^{\vphantom{\dagger}}(x)|\Psi}
\begin{align*} \psi^{\vphantom{\dagger}}(x)=\sum_{\beta} \varphi^{}_{\beta}(x)a^{\vphantom{\dagger}}_{\beta},\\ \psi^\dagger(x)=\sum_{\beta} \varphi^*_{\beta}(x)a^\dagger_{\beta}. \end{align*}
\rho_2(x,y)=\sum_{\alpha, \beta, \gamma, \delta}\varphi^{*}_{\alpha}(x)\varphi^{*}_{\beta}(y)\varphi^{}_{\gamma}(y)\varphi^{}_{\delta}(x)\braket{\Psi|a^\dagger_{\alpha}a^\dagger_{\beta}a^{\vphantom{\dagger}}_{\gamma}a^{\vphantom{\dagger}}_{\delta}|\Psi}.
\braket{\Psi|a^\dagger_{\alpha}a^\dagger_{\beta}a^{\vphantom{\dagger}}_{\gamma}a^{\vphantom{\dagger}}_{\delta}|\Psi}
\begin{align*} \rho_2(x,y)&=\sum_{\alpha, \beta, \gamma, \delta}\varphi^{*}_{\alpha}(x)\varphi^{*}_{\beta}(y)\varphi^{}_{\gamma}(y)\varphi^{}_{\delta}(x)\braket{\Psi|a^\dagger_{\alpha}a^\dagger_{\beta}a^{\vphantom{\dagger}}_{\gamma}a^{\vphantom{\dagger}}_{\delta}|\Psi}\\ &=\sum_{\alpha, \beta}N_\alpha N_\beta\left[\lvert{\varphi_{\alpha}(x)}\rvert^2\lvert{\varphi_{\beta}(y)}\rvert^2 \pm \varphi^*_\alpha(x)\varphi^{}_\alpha(y)\varphi^*_\beta(y)\varphi^{}_\beta(x) \right]. \end{align*}
Notice \alpha=\beta=\gamma=\delta has a factor 2N_\alpha^2
Should have N_\alpha(N_\alpha-1) for bosons; zero for fermions
Involves sum over a single index, general case is sum over two indices. Often not important in thermodynamic limit.
For plane wave states we have the usual prescription \sum_\alpha(\cdots) \longrightarrow L\int (\cdots)\frac{dk}{2\pi} assuming integrand smooth
Error from “wrong” terms has extra L^{-1}
Careful with Bose condensates, where one state has finite fraction of particles
\begin{align*} \rho_2(x,y)&=\sum_{\alpha, \beta, \gamma, \delta}\varphi^{*}_{\alpha}(x)\varphi^{*}_{\beta}(y)\varphi^{}_{\gamma}(y)\varphi^{}_{\delta}(x)\braket{\Psi|a^\dagger_{\alpha}a^\dagger_{\beta}a^{\vphantom{\dagger}}_{\gamma}a^{\vphantom{\dagger}}_{\delta}|\Psi}\\ &=\sum_{\alpha, \beta}N_\alpha N_\beta\left[\lvert{\varphi_{\alpha}(x)}\rvert^2\lvert{\varphi_{\beta}(y)}\rvert^2 \pm \varphi^*_\alpha(x)\varphi^{}_\alpha(y)\varphi^*_\beta(y)\varphi^{}_\beta(x) \right]. \end{align*}
‘Hole’ set by \lambda_\text{F} or mean particle separation
Decaying Friedel oscillations, indicating liquid-like correlations
For bosons \rho_2(x,y) = \rho_1(x)\rho_1(y) + g(x,y)g(y,x),
If g(x,y)\to 0 as \lvert{x-y}\rvert\to\infty \rho_2(x,x) is twice the value at \lvert{x-y}\rvert\to\infty.
\rho_2(x,y) = \rho_1(x)\rho_1(y) \pm g(x,y)g(y,x),
For different occupations can recalculate \rho_1(x) and g(x,y)
Applies to product states only
\rho_2(x,y) can show interference, as can \rho_1(x) (‘intensity’)
Classic BEC experiment of Andrews et al.
Earlier demonstrations of HBT in astro, see Wikipedia for more
N noninteracting bosons occupying ground state \varphi_{0}(\mathbf{r}) of some potential: a Bose condensate
N-body wavefunction is \Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)=\prod_i^N \varphi_0(\mathbf{r}_i) \lvert{\Psi}\rangle=\frac{1}{\sqrt{N!}}\left(a^\dagger_0\right)^N\lvert{\text{VAC}}\rangle where a^\dagger_0 creates particle in state \varphi_0(\mathbf{r})
Two identical BECs side by side
Switch off potentials: particles fly out
After some time wavefunctions overlap. What do we see?
One BEC, each atom in superposition of \varphi_L(\mathbf{r}) and \varphi_R(\mathbf{r}) \lvert{\bar N_L,\bar N_R}\rangle_\theta\equiv\frac{1}{\sqrt{N!}}\left[\sqrt{\frac{\bar N_L}{N}}e^{-i\theta/2} a^\dagger_L+\sqrt{\frac{\bar N_R}{N}}e^{i\theta/2}a^\dagger_R\right]^N\lvert{\text{VAC}}\rangle \bar N_{L,R} are average particle number (N=\bar N_L+\bar N_R)
System evolves for time t. Recall that field operator obeys i\frac{\partial \psi^{\vphantom{\dagger}}(\mathbf{r},t)}{\partial t} = -\frac{1}{2m}\nabla^2\psi^{\vphantom{\dagger}}(\mathbf{r},t) (no potential)
\begin{align*} \rho_1(\mathbf{r},t)=\bar N_L|\varphi_L(\mathbf{r},t)|^2+\bar N_R|\varphi_R(\mathbf{r},t)|^2+\overbrace{2\sqrt{\bar N_L \bar N_R}\mathrm{Re}\,e^{i\theta}\,\varphi^*_L(\mathbf{r},t)\varphi_R(\mathbf{r},t)}^{\equiv\rho_{\mathrm{int}( \mathbf{r},t)}} \end{align*}
If clouds begin overlap, last term can give interference fringes
Relative phase has real physical effect.
Check
Consider a Gaussian wavefunction of width R_0 at time t=0. Show (by substitution into the Schrödinger equation is fine) that this function evolves as
\varphi(\mathbf{r},t)=\frac{1}{\left(\pi R_t^{2}\right)^{3/4}}\exp\left[-\frac{\mathbf{r}^2\left(1+i t/m R_0^2)\right)}{2R_t^2}\right]
where R_t^2=R_0^2+\left(\frac{ t}{mR_0}\right)^2.
Do same thing with two condensates of fixed particle number
System is in product state (often Fock state in this context) \lvert{N_L,N_R}\rangle\equiv\frac{1}{\sqrt{N_L! N_R!}}\left(a^\dagger_L\right)^{N_L}\left(a^\dagger_R\right)^{N_R}\lvert{\text{VAC}}\rangle
Compute density as before \rho_1(\mathbf{r},t)=N_L|\varphi_L(\mathbf{r},t)|^2+N_R|\varphi_R(\mathbf{r},t)|^2 which differs from the previous result by the absence of the interference term.
But a single image is not an expectation value!
Correlation function can tell us about fluctuations between images
Our result for \rho_2 gives
\begin{align*} \rho_2(\mathbf{r},\mathbf{r}')&=\rho_1(\mathbf{r})\rho_1(\mathbf{r}') +N_LN_{R}\varphi_L^*(\mathbf{r})\varphi_R^*(\mathbf{r}')\varphi_L(\mathbf{r}')\varphi_R(\mathbf{r}) \nonumber\\ &\qquad+N_{L}N_R\varphi_R^*(\mathbf{r})\varphi_L^*(\mathbf{r}') \varphi_R(\mathbf{r}')\varphi_L(\mathbf{r}) \end{align*}
\rho_2 gives probability of finding an atom at \mathbf{r}' if there is one at \mathbf{r}
Conclusion: in each measurement of density, fringes are present but with random phase
Check
Prove this by showing that the density matrix
\rho=\int_0^{2\pi}\frac{d\theta}{2\pi}\lvert{\bar N_L,\bar N_R}\rangle_\theta\langle{\bar N_R,\bar N_L}\rvert_\theta
coincides with that of a mixture of Fock states with binomial distribution of atoms into states \varphi_{L}, \varphi_{r}. At large N this distribution becomes sharply peaked at occupations \bar N_L, \bar N_R.
\hat H_\text{int.} = \sum_{j<k} U(\mathbf{r}_j-\mathbf{r}_k)=\frac{1}{2}\int d\mathbf{r}_1 d\mathbf{r}_2\, U(\mathbf{r}_1-\mathbf{r}_2)\psi^\dagger(\mathbf{r}_1)\psi^\dagger(\mathbf{r}_2)\psi^{\vphantom{\dagger}}(\mathbf{r}_2)\psi^{\vphantom{\dagger}}(\mathbf{r}_1).
\sum_{j<k} U(\mathbf{r}_j-\mathbf{r}_k) = \frac{1}{2}\int \sum_{j\neq k}\delta(\mathbf{r}_1-\mathbf{r}_j)\delta(\mathbf{r}_2-\mathbf{r}_k)U(\mathbf{r}_1-\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2,
\begin{align*} \langle \hat V\rangle &= \overbrace{\frac{1}{2}\int d\mathbf{r}\, d\mathbf{r}'\, \rho_1(\mathbf{r}) U(\mathbf{r}-\mathbf{r}')\rho_1(\mathbf{r}')}^{\equiv E_\text{Hartree}} \\ &\qquad\overbrace{\pm \frac{1}{2}\int d\mathbf{r}\, d\mathbf{r}'\, U(\mathbf{r}-\mathbf{r}')g(\mathbf{r},\mathbf{r}')g(\mathbf{r}',\mathbf{r})}^{\equiv E_\text{Fock}} \end{align*}
The two terms are Hartree and Fock (or exchange) contributions
Basis of variational Hartree–Fock method for many body systems: approximate ground state by product state
What about spin?
Use field operators \psi^{\vphantom{\dagger}}_\sigma(\mathbf{r}), \psi^\dagger_\sigma(\mathbf{r}') satisfying
\begin{gather*} \left\{\psi^{\vphantom{\dagger}}_{\sigma_1}(\mathbf{r}_1),\psi^\dagger_{\sigma_2}(\mathbf{r}_2)\right\}=\delta_{\sigma_1\sigma_2}\delta(\mathbf{r}_1-\mathbf{r}_2)\nonumber\\ \left\{\psi^{\vphantom{\dagger}}_{\sigma_1}(\mathbf{r}_1),\psi^{\vphantom{\dagger}}_{\sigma_2}(\mathbf{r}_2)\right\}=\left\{\psi^\dagger_{\sigma_1}(\mathbf{r}_1),\psi^\dagger_{\sigma_2}(\mathbf{r}_2)\right\}=0 \end{gather*}
g_{\sigma_1\sigma_2}(\mathbf{r}_1,\mathbf{r}_2) = \braket{\Psi|\psi^\dagger_{\sigma_1}(\mathbf{r}_1)\psi^{\vphantom{\dagger}}_{\sigma_2}(\mathbf{r}_2)|\Psi}.
\mathbf{\rho}(\mathbf{r}) = \operatorname{tr}\left[g(\mathbf{r},\mathbf{r})\right],\quad \mathbf{s}(\mathbf{r}) = \frac{1}{2}\operatorname{tr}\left[\boldsymbol{\sigma}g(\mathbf{r},\mathbf{r})\right]
\hat H_\text{int.} = \frac{1}{2}\sum_{\sigma_1,\sigma_2}\int d\mathbf{r}_1 d\mathbf{r}_2\, U(\mathbf{r}_1-\mathbf{r}_2)\psi^\dagger_{\sigma_1}(\mathbf{r}_1)\psi^\dagger_{\sigma_2}(\mathbf{r}_2)\psi^{\vphantom{\dagger}}_{\sigma_2}(\mathbf{r}_2)\psi^{\vphantom{\dagger}}_{\sigma_1}(\mathbf{r}_1)
\begin{align*} \langle \hat H_\text{int.}\rangle &=\frac{1}{2}\int d\mathbf{r}\, d\mathbf{r}'\, \rho(\mathbf{r}) U(\mathbf{r}-\mathbf{r}')\rho(\mathbf{r}')\\ &- \frac{1}{2}\int d\mathbf{r}\, d\mathbf{r}'\, U(\mathbf{r}-\mathbf{r}')\operatorname{tr}\left[g(\mathbf{r},\mathbf{r}')g(\mathbf{r}',\mathbf{r})\right] \end{align*}
E_{\text{Fock}} =-\frac{V_0}{4} \int d\mathbf{r}\, \rho(\mathbf{r})^2-V_0\int d\mathbf{r}\, \mathbf{s}(\mathbf{r})\cdot\mathbf{s}(\mathbf{r})
Check
This is most succintly put by the formula \rho_2(\mathbf{r},\mathbf{r}) = \frac{1}{2}\rho(\mathbf{r})^2 - 2\mathbf{s}(\mathbf{r})\cdot\mathbf{s}(\mathbf{r}) So \lvert{\mathbf{s}(\mathbf{r})}\rvert=\rho(\mathbf{r})/2\longrightarrow\rho_2(\mathbf{r},\mathbf{r})=0
Hartree–Fock energy forms the basis of variational method using product states
For a Hamiltonian with translational invariance H = \int d\mathbf{r}\frac{1}{2m}\nabla\psi^\dagger\cdot\nabla\psi^{\vphantom{\dagger}}+ \frac{1}{2}\int d\mathbf{r}d\mathbf{r}' U(\mathbf{r}-\mathbf{r}')\psi^\dagger(\mathbf{r})\psi^\dagger(\mathbf{r}')\psi^{\vphantom{\dagger}}(\mathbf{r}')\psi^{\vphantom{\dagger}}(\mathbf{r}) guaranteed to involve with plane wave single particle states. Only variational parameters are occupancies of states
If translational symmetry is broken, have to allow the states — as well as the occupancies — to vary.
Polarizing spins in a Fermi gas is not without cost (otherwise everything would be ferromagnetic!)
Price to pay is increased kinetic energy!
\begin{align*} N &= \sum_{|\mathbf{k}|<k_\text{F}}1\longrightarrow L^3 \int_{|\mathbf{k}|<k_\text{F}} \frac{d\mathbf{k}}{(2\pi)^3} = \frac{k_\text{F}^3L^3}{6\pi^2} \\ E_\text{kin} &= \sum_{|\mathbf{k}|<k_\text{F}} \frac{\mathbf{k}^2}{2m} \longrightarrow L^3 \int_{|\mathbf{k}|<k_\text{F}} \frac{d\mathbf{k}}{(2\pi)^3} \frac{\mathbf{k}^2}{2m}\\ &= \frac{k_\text{F}^5L^3}{20\pi^2 m} = L^3 \frac{3}{10m}(6\pi^2)^{2/3} n^{5/3} \end{align*}
E_\text{kin}(n, \bar s) = \frac{cL^3}{m}\left(\left[n/2+\bar s\right]^{5/3}+\left[n/2-\bar s\right]^{5/3}\right).
E_\text{kin}(P) = \frac{E_\text{K}}{2}\left[(1+P)^{5/3}+(1-P)^{5/3}\right].
E_\text{HF}(n,\bar s) = \frac{V_0L^3}{2} n^2 - \frac{V_0L^3}{2} \left(n_\uparrow^2+n_\downarrow^2\right) = \frac{V_0L^3}{2} \left(\frac{1}{2}n^2 - 2\bar s^2\right).
E_\text{HF}(P) = \frac{E_V}{2}(1-P^2).
Check
Minimize the total energy E(P) = E_\text{kin}(P) + E_\text{HF}(P) to show
\begin{align*} \psi^{\vphantom{\dagger}}(\mathbf{r})\equiv\frac{1}{L^{3/2}}\sum_{\mathbf{k}} \exp(i\mathbf{k}\cdot\mathbf{r})a^{\vphantom{\dagger}}_{\mathbf{k}} \\ \psi^\dagger(\mathbf{r})\equiv\frac{1}{L^{3/2}}\sum_{\mathbf{k}} \exp(-i\mathbf{k}\cdot\mathbf{r})a^\dagger_{\mathbf{k}} \end{align*}
U(\mathbf{r}-\mathbf{r}') = \frac{1}{L^3}\sum_\mathbf{q}\tilde U(\mathbf{q}) \exp(i\mathbf{q}\cdot[\mathbf{r}-\mathbf{r}']).
\hat H_\text{int.} = \frac{1}{2L^3} \sum_{\mathbf{k}_1+\mathbf{k}_2=\mathbf{k}_3+\mathbf{k}_4} \tilde U(\mathbf{k}_1-\mathbf{k}_4) a^\dagger_{\mathbf{k}_1}a^\dagger_{\mathbf{k}_2}a^{\vphantom{\dagger}}_{\mathbf{k}_3}a^{\vphantom{\dagger}}_{\mathbf{k}_4}
\hat H_\text{int.} = \frac{1}{2L^3} \sum_{\mathbf{k}_1+\mathbf{k}_2=\mathbf{k}_3+\mathbf{k}_4} \tilde U(\mathbf{k}_1-\mathbf{k}_4) a^\dagger_{\mathbf{k}_1}a^\dagger_{\mathbf{k}_2}a^{\vphantom{\dagger}}_{\mathbf{k}_3}a^{\vphantom{\dagger}}_{\mathbf{k}_4}
\langle{\mathbf{N}}\rvert \hat H_\text{int.} \lvert \mathbf{N} \rangle = \frac{1}{2V}\tilde U(0) \sum_{\mathbf{k}_1,\mathbf{k}_2} N_{\mathbf{k}_1}N_{\mathbf{k}_2} - \frac{1}{2V} \sum_{\mathbf{k}_1,\mathbf{k}_2} \tilde U(\mathbf{k}_1-\mathbf{k}_2) N_{\mathbf{k}_1}N_{\mathbf{k}_2}
\langle{\mathbf{N}}\rvert \hat H_\text{int.} \lvert \mathbf{N} \rangle = \frac{1}{2V}\tilde U(0) \sum_{\mathbf{k}_1,\mathbf{k}_2} N_{\mathbf{k}_1}N_{\mathbf{k}_2} - \frac{1}{2V} \sum_{\mathbf{k}_1,\mathbf{k}_2} \tilde U(\mathbf{k}_1-\mathbf{k}_2) N_{\mathbf{k}_1}N_{\mathbf{k}_2}
Hartree term just depends on total number
Fock term depends on the individual occupations
Interaction energy to add a single particle to state \mathbf{k} is
\Delta U_{\mathbf{k}} = \frac{\tilde U(0)}{V} \sum_{\mathbf{k}'} N_{\mathbf{k}'} - \frac{1}{V}\sum_{\mathbf{k}'} \tilde U(\mathbf{k}-\mathbf{k}') N_{\mathbf{k}'}