\Psi^{\text{S}}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}(\mathbf{r}_1,\ldots,\mathbf{r}_N)=\sqrt{\frac{\prod_{\alpha}N_{\alpha}!}{N!}}\sum_P\varphi_{\alpha_{1}}(\mathbf{r}_{P_1})\varphi_{\alpha_{2}}(\mathbf{r}_{P_2})\cdots\varphi_{\alpha_{N}}(\mathbf{r}_{P_N})
\Psi^{\text{S}}(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \frac{1}{\sqrt{N!}}\sum_P\psi_1(\mathbf{r}_{P_1})\psi_{2}(\mathbf{r}_{P_2})\cdots\psi_{N}(\mathbf{r}_{P_N})
\Phi^{\text{S}}(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \frac{1}{\sqrt{N!}}\sum_P\phi_1(\mathbf{r}_{P_1})\phi_{2}(\mathbf{r}_{P_2})\cdots\phi_{N}(\mathbf{r}_{P_N})
\langle{\Psi}\rvert\Phi\rangle = \sum_P \prod_{n=1}^N\langle{\psi_n}\rvert\phi_{P_n}\rangle = \operatorname{perm} \langle{\psi_m}\rvert\phi_{n}\rangle
\frac{1}{\sqrt{n!}}\left(a^\dagger\right)^n\lvert{0}\rangle\longleftrightarrow \psi_n(x) representation using a^{\vphantom{\dagger}}, a^\dagger very useful; never need explicit \psi_n(x)
??\longleftrightarrow \Psi^{\text{S}}(\mathbf{r}_1,\ldots,\mathbf{r}_N)
We consider states with different numbers of particles
\lvert{\text{VAC}}\rangle denotes state with no particles (the vacuum state)
a^\dagger(\psi) creates particle in single particle state \psi(\mathbf{r})
\psi(\mathbf{r})\longleftrightarrow a^\dagger(\psi)\lvert{\text{VAC}}\rangle
a^\dagger\left(c_1\psi_1+c_2\psi_2\right) = c_1a^\dagger(\psi_1)+c_2a^\dagger(\psi_2)
If \lvert{\Psi}\rangle has N particle state, a^\dagger(\psi)\lvert{\Psi}\rangle has N+1 particles
Since this is orthogonal to the vacuum state
\langle{\text{VAC}}\rvert a^\dagger(\psi)\lvert{\Psi}\rangle=0 for any state \lvert{\Psi}\rangle
a^{\vphantom{\dagger}}(\psi)\lvert{\text{VAC}}\rangle=0
\Psi^{\text{S}}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \longleftrightarrow a^\dagger(\psi_1)\cdots a^\dagger(\psi_N)\lvert{\text{VAC}}\rangle
\left[a^\dagger(\psi),a^\dagger(\phi)\right]=0 for any states \psi(\mathbf{r}) and \phi(\mathbf{r}). Taking the adjoint gives
\left[a^{\vphantom{\dagger}}(\psi),a^{\vphantom{\dagger}}(\phi)\right]=0
\langle{\psi}\rvert\phi\rangle = \langle{\text{VAC}}\rvert a^{\vphantom{\dagger}}(\psi)a^\dagger(\phi) \lvert \text{VAC} \rangle
\left[a^{\vphantom{\dagger}}(\psi),a^\dagger(\phi)\right] = \langle{\psi}\rvert \phi \rangle together with a^{\vphantom{\dagger}}(\psi)\lvert{\text{VAC}}\rangle=0 this gives correct inner product
Check
Show that this also reproduces the inner product for N-particle product states
a^\dagger(\varphi_\alpha)\equiv a^\dagger_\alpha,\quad a^{\vphantom{\dagger}}(\varphi_\alpha)\equiv a^{\vphantom{\dagger}}_\alpha
\begin{aligned} \left[a^{\vphantom{\dagger}}_\alpha,a^{\vphantom{\dagger}}_\beta\right]=0,\quad \left[a^\dagger_\alpha,a^\dagger_\beta\right]=0,\quad \left[a^{\vphantom{\dagger}}_\alpha,a^\dagger_\beta\right] = \delta_{\alpha\beta} \end{aligned}
\Psi^{\text{S}}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \longleftrightarrow\lvert{\mathbf{N}}\rangle \equiv \prod_\alpha \frac{\left(a^\dagger_\alpha\right)^{N_\alpha}}{\sqrt{N_\alpha!}}\lvert{\text{VAC}}\rangle
\mathsf{N}^{\vphantom{\dagger}}_{\alpha}\lvert{\mathbf{N}}\rangle=N_{\alpha}\lvert{\mathbf{N}}\rangle
\begin{aligned} \left[a^{\vphantom{\dagger}}_{\alpha},\mathsf{N}^{\vphantom{\dagger}}_{\alpha}\right]=a^{\vphantom{\dagger}}_{\alpha}\qquad \left[a^\dagger_{\alpha},\mathsf{N}^{\vphantom{\dagger}}_{\alpha}\right]=-a^\dagger_{\alpha} \end{aligned}
“count then destroy minus destroy then count”
\lvert{\tilde{\varphi}_{\alpha}}\rangle=\sum_{\beta} \langle{\varphi_{\beta}}\rvert \tilde{\varphi}_{\alpha} \rangle\lvert{\varphi_{\beta}}\rangle
\tilde{a^{\vphantom{\dagger}}}_{\alpha}^\dagger\equiv\sum_{\beta} \langle{\varphi_{\beta}}\rvert \tilde{\varphi}_{\alpha} \rangle a^\dagger_{\beta}
Often we work in position eigenstates \{\lvert{\mathbf{r}}\rangle\}, so \langle{\varphi_{\beta}}\rvert \mathbf{r} \rangle=\varphi^{*}_{\beta}(\mathbf{r})
Denoting corresponding creation operator as \psi^\dagger(\mathbf{r})
\psi^\dagger(\mathbf{r})\equiv\sum_{\beta} \varphi^{*}_{\beta}(\mathbf{r})a^\dagger_{\beta}
\psi^{\vphantom{\dagger}}(\mathbf{r})\equiv\sum_{\beta} \varphi_{\beta}(\mathbf{r})a^{\vphantom{\dagger}}_{\beta}
\begin{gather*} \left[\psi^{\vphantom{\dagger}}(\mathbf{r}_1),\psi^\dagger(\mathbf{r}_2)\right]=\delta(\mathbf{r}_1-\mathbf{r}_2)\nonumber\\ \left[\psi^{\vphantom{\dagger}}(\mathbf{r}_1),\psi^{\vphantom{\dagger}}(\mathbf{r}_2)\right]=\left[\psi^\dagger(\mathbf{r}_1),\psi^\dagger(\mathbf{r}_2)\right]=0 \end{gather*}
Check
If a state \lvert{\Psi}\rangle has wavefunction \Psi(x_1,\ldots, x_N), show that the wavefunction of the state \psi^{\vphantom{\dagger}}(X)\lvert{\Psi}\rangle is the N-1 particle wavefunction
\sqrt{N}\Psi(X,x_1,\ldots, x_{N-1})
Hint: Show that this is true for a product state first.
\begin{aligned} \lvert{\mathbf{k}}\rangle=\frac{\exp(i\mathbf{k}\cdot \mathbf{r})}{\sqrt{V}}, \quad \mathbf{k}=2\pi\left(\frac{n_{x}}{L_{x}},\frac{n_{y}}{L_{y}},\frac{n_{z}}{L_{z}}\right),\quad n_{x,y,z}\text{ integer}, \end{aligned} with V=L_{x}L_{y}L_{z} (periodic b.c.)
Check
What is the wavefunction of the two-particle state
\sum_\mathbf{k}c_\mathbf{k}a^\dagger_\mathbf{k}a^\dagger_{-\mathbf{k}}\lvert{\text{VAC}}\rangle?
\Psi^{\text{A}}(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \frac{1}{\sqrt{N!}}\sum_P (-1)^P\psi_1(\mathbf{r}_{P_1})\psi_{2}(\mathbf{r}_{P_2})\cdots\psi_{N}(\mathbf{r}_{P_N})
Note: overall sign fixed by labelling of states \psi_j
\left\{a^\dagger(\psi),a^\dagger(\phi)\right\}=0, \{A,B\}\equiv AB+BA is anticommutator. Also
\left\{a^{\vphantom{\dagger}}(\psi),a^{\vphantom{\dagger}}(\phi)\right\}=0
\langle{\Psi}\rvert\Phi\rangle = \sum_P (-1)^P\prod_{n=1}^N\langle{\psi_n}\rvert\phi_{P_n}\rangle = \det \langle{\psi_m}\rvert\phi_{n}\rangle,
which works out if
\left\{a^{\vphantom{\dagger}}(\psi),a^\dagger(\phi)\right\} = \langle{\psi}\rvert \phi \rangle
Check
Check this.
\begin{gather*} \left\{\psi^{\vphantom{\dagger}}(\mathbf{r}_1),\psi^\dagger(\mathbf{r}_2)\right\}=\delta(\mathbf{r}_1-\mathbf{r}_2)\nonumber\\ \left\{\psi^{\vphantom{\dagger}}(\mathbf{r}_1),\psi^{\vphantom{\dagger}}(\mathbf{r}_2)\right\}=\left\{\psi^\dagger(\mathbf{r}_1),\psi^\dagger(\mathbf{r}_2)\right\}=0 \end{gather*}
Check
Think about the form that the operators a^{\vphantom{\dagger}}_\alpha, a^\dagger_\alpha take in the basis of product states. Start with one state \varphi_\alpha. What’s the matrix form of a^\dagger_\alpha in terms of states \lvert{N_\alpha}\rangle? Now consider two states. Can you see how the commutation and anticommutation relations can be satisfied?
\hat A = \sum_{j=1}^N A_j
\hat H = \sum_{j=1}^N H_j = \sum_{j=1}^N \left[-\frac{\nabla_j^2}{2m}+V(\mathbf{r}_j)\right]
Operators of this type are one particle operators
How to represent them using creation and annihilation operators?
A\lvert{\varphi_\alpha}\rangle = \sum_{\beta} \lvert{\varphi_\beta}\rangle\langle{\varphi_\beta}\rvert A \lvert \varphi_\alpha \rangle = \sum_\beta A_{\beta\alpha}\lvert{\varphi_\beta}\rangle
\hat A \lvert{\Psi^{\text{S/A}}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}}\rangle = \sum_\beta \left[A_{\beta\alpha_1}\lvert{\Psi^{\text{S/A}}_{\beta\alpha_{2}\cdots\alpha_{N}}}\rangle +A_{\beta\alpha_2}\lvert{\Psi^{\text{S/A}}_{\alpha_1\beta\cdots\alpha_{N}}}\rangle+\cdots A_{\beta\alpha_N}\lvert{\Psi^{\text{S/A}}_{\alpha_1\alpha_{2}\cdots\beta}}\rangle\right]
\hat A = \sum_{\alpha\beta}A_{\alpha\beta}a^\dagger_\alpha a^{\vphantom{\dagger}}_\beta acting on state \lvert{\mathbf{N}}\rangle \equiv \prod_\alpha \frac{\left(a^\dagger_\alpha\right)^{N_\alpha}}{\sqrt{N_\alpha!}}\lvert{\text{VAC}}\rangle
\left[a^\dagger_\alpha a^{\vphantom{\dagger}}_\beta,a^\dagger_\gamma\right]=a^\dagger_\alpha\delta_{\beta\gamma} for bosons and fermions
\begin{aligned} \mathop{\hat A}a^\dagger_{\beta}\lvert{\text{VAC}}\rangle&=\left(\left[\mathop{\hat A},a^\dagger_{\beta}\right]+a^\dagger_{\beta}\mathop{\hat A}\right)\lvert{\text{VAC}}\rangle\nonumber\\ &=\sum_{\alpha} A_{\alpha \beta} a^\dagger_{\alpha}\lvert{\text{VAC}}\rangle \end{aligned}
Check
Try it for a two particle state!
\hat A = \sum_{\alpha\beta}A_{\alpha\beta}a^\dagger_\alpha a^{\vphantom{\dagger}}_\beta
Find matrix element \langle{\mathbf{N}}\rvert \hat A \lvert \mathbf{N'} \rangle between product states made of orthonormal single particle states
Vanishes unless N_\beta = N'_\beta-1 and N_\alpha = N'_\alpha+1 we have
\langle{\mathbf{N}}\rvert \hat A \lvert \mathbf{N'} \rangle = A_{\alpha\beta} \sqrt{N_\alpha N'_\beta}
Check
This formula is not so easy to work out in the first quantized representation. Try it!
\hat A = \sum_{\alpha\beta}A_{\alpha\beta}a^\dagger_\alpha a^{\vphantom{\dagger}}_\beta
Like expectation value of \mathop{A} in single particle state \sum_{\alpha}a_{\alpha}\lvert{\varphi_{\alpha}}\rangle
But a_\alpha are operators not numbers. This is the origin of the name second quantization
Resemblance makes it easy to write down second quantized form
\hat H = \sum_{j=1}^N H_j = \sum_{j=1}^N \left[-\frac{\nabla_j^2}{2m}+V(\mathbf{r}_j)\right]
Second quantized form \mathop{\hat H} \equiv \sum_{\alpha,\beta}\langle{\varphi_{\alpha}}\rvert \mathop{H} \lvert \varphi_{\beta} \rangle a^\dagger_{\alpha}a^{\vphantom{\dagger}}_{\beta}, H is single particle Hamiltonian H=-\frac{1}{2m}\nabla_{i}^{2}+V(\mathbf{r_{i}})
If basis \lvert{\varphi_{\alpha}}\rangle is eigenbasis of H: \langle{\varphi_{\alpha}}\rvert \mathop{H} \lvert \varphi_{\beta} \rangle=E_{\alpha}\delta_{\alpha \beta} and
\begin{aligned} \mathop{\hat H} \equiv \sum_{\alpha} E_{\alpha} a^\dagger_{\alpha}a^{\vphantom{\dagger}}_{\alpha}=\sum_{\alpha} E_{\alpha} \mathsf{N}^{\vphantom{\dagger}}_{\alpha} \end{aligned}
\begin{aligned} \mathop{\hat H}&=\int d\mathbf{r}\left[-\frac{1}{2m}\psi^\dagger(\mathbf{r})\nabla^{2}\psi^{\vphantom{\dagger}}(\mathbf{r})+V(\mathbf{r})\psi^\dagger(\mathbf{r})\psi^{\vphantom{\dagger}}(\mathbf{r})\right]\nonumber\\ &=\int d\mathbf{r}\left[\frac{1}{2m}\nabla\psi^\dagger(\mathbf{r})\cdot\nabla\psi^{\vphantom{\dagger}}(\mathbf{r})+V(\mathbf{r})\psi^\dagger(\mathbf{r})\psi^{\vphantom{\dagger}}(\mathbf{r})\right], \end{aligned} (integration by parts)
\psi^{\vphantom{\dagger}}(\mathbf{r})\equiv\sum_{\beta} \varphi_{\beta}(\mathbf{r})a^{\vphantom{\dagger}}_{\beta}
\begin{split} i\partial_{t}\psi^{\vphantom{\dagger}}(\mathbf{r},t) &= -\left[\mathop{\hat H},\psi^{\vphantom{\dagger}}(\mathbf{r},t)\right]\\ &= -\frac{1}{2m}\nabla^{2}\psi^{\vphantom{\dagger}}(\mathbf{r},t)+V(\mathbf{r})\psi^{\vphantom{\dagger}}(\mathbf{r},t) \end{split} just the time dependent Schrödinger equation!
\rho(\mathbf{x})\equiv\delta(\mathbf{x}-\mathbf{r})
Expectation value in single particle state \varphi(\mathbf{r}) is \rho(\mathbf{x})=\lvert{\varphi(\mathbf{x})}\rvert^{2}
Second quantized form of the operator is then
\hat\rho(\mathbf{x})\equiv\psi^\dagger(\mathbf{x})\psi^{\vphantom{\dagger}}(\mathbf{x})
\hat N=\int d\mathbf{x}\, \psi^\dagger(\mathbf{x})\psi^{\vphantom{\dagger}}(\mathbf{x})=\sum_{\alpha} a^\dagger_{\alpha}a^{\vphantom{\dagger}}_{a}=\sum_{\alpha}\mathsf{N}^{\vphantom{\dagger}}_{\alpha}
\langle{N_{0},N_{1}\ldots}\rvert \hat\rho(\mathbf{r}) \lvert N_{0},N_{1}\ldots \rangle = \sum_{\alpha} N_{\alpha}\left|\varphi_{\alpha}(\mathbf{r})\right|^{2}.
Check
Prove using \psi^{\vphantom{\dagger}}(\mathbf{r})\equiv\sum_{\beta} \varphi_{\beta}(\mathbf{r})a^{\vphantom{\dagger}}_{\beta}
\hat{\mathbf{j}}(\mathbf{r})=-i\frac{1}{2m}\left[\psi^\dagger(\mathbf{r})\left(\nabla\psi^{\vphantom{\dagger}}(\mathbf{r})\right)-\left(\nabla\psi^\dagger(\mathbf{r})\right)\psi^{\vphantom{\dagger}}(\mathbf{r})\right].
\begin{aligned} \hat\rho_{\mathbf{q}}\equiv\int d\mathbf{r}\, \hat\rho(\mathbf{r})e^{-i\mathbf{q}\cdot \mathbf{r}}=\sum_{\mathbf{k}} a^\dagger_{\mathbf{k}-\mathbf{q}}a^{\vphantom{\dagger}}_{\mathbf{k}}\nonumber\\ \hat{\mathbf{j}}_{\mathbf{q}}\equiv\int d\mathbf{r}\, \hat{\mathbf{j}}(\mathbf{r})e^{-i\mathbf{q}\cdot \mathbf{r}}=\frac{1}{m}\sum_{\mathbf{k}} (\mathbf{k}-\mathbf{q}/2)a^\dagger_{\mathbf{k}-\mathbf{q}}a^{\vphantom{\dagger}}_{\mathbf{k}} \end{aligned}
g(\mathbf{r},\mathbf{r}') \equiv N \int d\mathbf{r}_{2}\cdots d\mathbf{r}_{N}\,\Psi^{*}(\mathbf{r},\mathbf{r}_{2},\ldots,\mathbf{r}_{N})\Psi(\mathbf{r}',\mathbf{r}_{2},\ldots,\mathbf{r}_{N}).
Check
Show that this can be written as
g(\mathbf{r},\mathbf{r}')= \langle{\Psi}\rvert \psi^\dagger(\mathbf{r})\psi^{\vphantom{\dagger}}(\mathbf{r}') \lvert \Psi \rangle
g(\mathbf{r},\mathbf{r}') = \sum_{\alpha} N_{\alpha}\varphi_{\alpha}^{*}(\mathbf{r})\varphi^{}_{\alpha}(\mathbf{r}')
\lvert{\text{Fermi sea}}\rangle = \prod_{|\mathbf{k}|<k_F} a^\dagger_\mathbf{k}\lvert{\text{VAC}}\rangle
Check
\begin{aligned} g(\mathbf{r},\mathbf{r}')&=\frac{1}{V}\sum_{|\mathbf{k}|<k_{F}} e^{i\mathbf{k}\cdot(\mathbf{r}'-\mathbf{r})}=\int_{|\mathbf{k}|<k_{F}} \frac{d\mathbf{k}}{(2\pi)^{3}}\,e^{i\mathbf{k}\cdot(\mathbf{r}'-\mathbf{r})}\nonumber\\ &=\frac{k_{F}^{3}}{2\pi^{2}}\left[\frac{\sin\left(k_{F}|\mathbf{r}'-\mathbf{r}|\right)}{(k_{F}|\mathbf{r}'-\mathbf{r}|)^{3}}-\frac{\cos\left(k_{F}|\mathbf{r}'-\mathbf{r}|\right)}{(k_{F}|\mathbf{r}'-\mathbf{r}|)^{2}}\right]. \end{aligned}
Note that g(\mathbf{r},\mathbf{r})=\frac{k_{F}^{3}}{6\pi^{2}}=n
\hat B = \sum_{j<k} B_{jk}.
\begin{aligned} B_{\alpha\beta,\gamma\delta} &= \langle{\varphi_\alpha}\rvert_1\langle{\varphi_\beta}\rvert_2 B_{12} \lvert{\varphi_\gamma}\rangle_1\lvert{\varphi_\delta}\rangle_2\\ \hat B &= \frac{1}{2}\sum_{\alpha\beta\gamma\delta} B_{\alpha\beta,\gamma\delta}a^\dagger_\alpha a^\dagger_\beta a^{\vphantom{\dagger}}_\delta a^{\vphantom{\dagger}}_\gamma,\qquad B_{\alpha\beta,\gamma\delta} = B_{\beta\alpha,\delta\gamma} \end{aligned} (Note order, which is important for fermions!)
\begin{aligned} B_{\alpha\beta,\gamma\delta} &= \langle{\varphi_\alpha}\rvert_1\langle{\varphi_\beta}\rvert_2 B_{12} \lvert{\varphi_\gamma}\rangle_1\lvert{\varphi_\delta}\rangle_2\\ \hat B &= \frac{1}{2}\sum_{\alpha\beta\gamma\delta} B_{\alpha\beta,\gamma\delta}a^\dagger_\alpha a^\dagger_\beta a^{\vphantom{\dagger}}_\delta a^{\vphantom{\dagger}}_\gamma. \end{aligned}
Check
Check this works on product states (N=2 first)
\langle{\mathbf{N}}\rvert \hat A \lvert \mathbf{N'} \rangle = A_{\alpha\beta} \sqrt{N_\alpha N'_\beta}
\langle{\mathbf{N}}\rvert \hat B \lvert \mathbf{N'} \rangle = \left[B_{\alpha\beta,\gamma\delta}\pm B_{\alpha\beta,\delta\gamma}\right] \sqrt{N_\alpha N_\beta N'_\gamma N'_\delta} with N_{\gamma,\delta} = N'_{\gamma,\delta}-1 and N_{\alpha,\beta} = N'_{\alpha,\beta}+1
\langle{\mathbf{N}}\rvert \hat B \lvert \mathbf{N'} \rangle = \left[B_{\alpha\beta,\gamma\delta}\pm B_{\alpha\beta,\delta\gamma}\right] \sqrt{N_\alpha N_\beta N'_\gamma N'_\delta}.
\begin{gather*} N'_\gamma N'_\delta \to N'_\gamma (N'_\gamma-1) && \gamma=\delta\\ N_\alpha N_\beta \to N_\alpha (N_\alpha-1) && \alpha=\beta \end{gather*} In thermodynamic limit these terms usually make a vanishing contribution when sums replaced with integrals
\hat H_\text{int.} = \sum_{j<k} U(\mathbf{r}_j-\mathbf{r}_k).
\hat H_\text{int.} = \frac{1}{2}\int d\mathbf{r}_1 d\mathbf{r}_2\, U(\mathbf{r}_1-\mathbf{r}_2)\psi^\dagger(\mathbf{r}_1)\psi^\dagger(\mathbf{r}_2)\psi^{\vphantom{\dagger}}(\mathbf{r}_2)\psi^{\vphantom{\dagger}}(\mathbf{r}_1)
\frac{1}{2}\int d\mathbf{r}_1 d\mathbf{r}_2\, U(\mathbf{r}_1-\mathbf{r}_2)\rho(\mathbf{r}_1)\rho(\mathbf{r}_2) Operator order prevents a particle from interacting with itself!
\hat H_\text{int.} = \frac{1}{2}\int d\mathbf{r}_1 d\mathbf{r}_2\, U(\mathbf{r}_1-\mathbf{r}_2)\psi^\dagger(\mathbf{r}_1)\psi^\dagger(\mathbf{r}_2)\psi^{\vphantom{\dagger}}(\mathbf{r}_2)\psi^{\vphantom{\dagger}}(\mathbf{r}_1)
Check
\hat H_\text{int} has zero expectation for 1 particle
H = -\frac{1}{2m}\sum_j \frac{\partial^2}{\partial x_j^2} + \overbrace{c\sum_{j<k}\delta(x_j-x_k)}^{\equiv H_\text{int}}. has second quantized form H = \int dx \left[\frac{1}{2}\partial_x\psi^\dagger(x)\partial_x\psi^{\vphantom{\dagger}}(x) + \frac{c}{2}\psi^\dagger(x)\psi^\dagger(x)\psi^{\vphantom{\dagger}}(x)\psi^{\vphantom{\dagger}}(x)\right] \psi^{\vphantom{\dagger}}(x), \psi^\dagger(x) satisfy the canonical bosonic commutation relations
QFT is a language, but writing something in a new way doesn’t (necessarily) make it easier to solve!