What can we solve in quantum mechanics?
What would we like to solve?
H = -\frac{1}{2m}\sum_{j=1}^M\nabla^2_j + e^2\sum_{j<k}\frac{1}{|\mathbf{r}_j-\mathbf{r}_k|} - e^2\sum_{j<k}\frac{Z_k}{|\mathbf{r}_j-\mathbf{R}_k|}
Want many-electron wavefunction \Psi(\mathbf{r}_1,\ldots \mathbf{r}_N)
Hard for atoms / molecules: impossible for matter N\sim N_A!
Goal: what is a solid / metal / superconductor / superfluid?

H = \sum_{j=1}^N \left[\frac{p_j^2}{2m} + \frac{k}{2} (u_j-u_{j+1})^2 \right]
Course website tqm.tripos.org (updated with slides)
Lecture capture
Lectures are 90 minutes with 5 minute break roughly halfway
Supervision in w/c 21/10, 4/11, 18/11, and 2/12. Details to follow
Check
Small exercises to check your understanding as you read the notes. Make sure you do them!
This lecture is about the general character of many body wavefunctions and what they tell us, focusing on the simplest type: product states
Systems of indistinguishable particles are described by totally symmetric or totally antisymmetric wavefunctions
In general described by \Psi(\mathbf{x},\mathbf{y})
A pair of particles in states \lvert{\varphi_1}\rangle and \lvert{\varphi_2}\rangle
\Psi_\text{dist.}(\mathbf{r}_1,\mathbf{r}_2)\stackrel{?}{=} \varphi_1(\mathbf{r}_1)\varphi_2(\mathbf{r}_2)
\Psi(\mathbf{r}_1,\mathbf{r}_2)=\frac{1}{\sqrt{2}}[\varphi_1(\mathbf{r}_1)\varphi_2(\mathbf{r}_2)\pm \varphi_2(\mathbf{r}_1)\varphi_1(\mathbf{r}_2)]
upper sign for bosons and the lower for fermions
1/\sqrt{2} for normalization if \varphi_{1,2}(\mathbf{r}) are orthonormal
When \varphi_1=\varphi_2 fermion \Psi(\mathbf{r}_1,\mathbf{r}_2) vanishes: exclusion principle
Probability density is \rho_{12}(\mathbf{r}_1,\mathbf{r}_2)=|\Psi(\mathbf{r}_1,\mathbf{r}_2)|^2
For distinguishable particles
\rho_{12}(\mathbf{r}_1,\mathbf{r}_2)=|\varphi_1(\mathbf{r}_1)\varphi_2(\mathbf{r}_2)|^2=\rho_1(\mathbf{r}_1)\rho_2(\mathbf{r}_2)
Check
Work it out for identical bosons and fermions. Show that \rho_{12}(\mathbf{r},\mathbf{r}) = 0 for fermions, and \rho_{12}(\mathbf{r},\mathbf{r}) = 2\rho_1(\mathbf{r})\rho_2(\mathbf{r}) for bosons.
\begin{aligned} \rho_{12}(\mathbf{r}_1,\mathbf{r}_2) &= \frac{1}{2}\left[\rho_1(\mathbf{r}_1)\rho_2(\mathbf{r}_2)+\rho_1(\mathbf{r}_2)\rho_2(\mathbf{r}_1)\right] \\ &\pm\frac{1}{2}\left[\varphi^{}_1(\mathbf{r}_1)\varphi^*_2(\mathbf{r}_1)\varphi^{}_2(\mathbf{r}_2)\varphi^*_1(\mathbf{r}_2)+\varphi^{}_1(\mathbf{r}_2)\varphi^*_2(\mathbf{r}_2)\varphi^{}_2(\mathbf{r}_1)\varphi^*_1(\mathbf{r}_1)\right] \end{aligned}
Two photons (bosons) approach a beam splitter from either side
Start in orthogonal states, end up in orthogonal states e.g.
\begin{aligned} \lvert{\text{Left}}\rangle\to\frac{1}{\sqrt{2}}\left(\lvert{\text{Left}}\rangle+ \lvert{\text{Right}}\rangle\right)\\\\ \lvert{\text{Right}}\rangle\to\frac{1}{\sqrt{2}}\left(\lvert{\text{Left}}\rangle- \lvert{\text{Right}}\rangle\right) \end{aligned}
Check
If we start in \frac{1}{\sqrt{2}}[\varphi_\text{L}(\mathbf{r}_1)\varphi_\text{R}(\mathbf{r}_2)\pm \varphi_\text{R}(\mathbf{r}_1)\varphi_\text{L}(\mathbf{r}_2)] What state do we end up in?
For bosons (+ sign) the different terms may be represented

H = \sum_{i=1}^{N} \overbrace{\left[-\frac{\nabla_i^{2}}{2m}+V(\mathbf{r}_i)\right]}^{\equiv H_\text{sp}\text{, single particle Hamiltonian}}
H_\text{sp} has eigenstates \{\varphi_\alpha(\mathbf{r})\} and eigenenergies \{E_\alpha\}
Eigenstate of N distinguishable particles \lvert{\Psi_{\alpha_{1}\alpha_{2}\cdots \alpha_{N}}}\rangle=\varphi_{\alpha_{1}}(\mathbf{r_{1}})\varphi_{\alpha_{2}}(\mathbf{r_{2}})\cdots\varphi_{\alpha_{N}}(\mathbf{r_{N}})
Check
Why is the energy
E = \sum_{j=1}^N E_{\alpha_j}?
\Psi(\mathbf{r}_1,\mathbf{r}_2)=\frac{1}{\sqrt{2}}[\Psi_\text{dist.}(\mathbf{r}_1,\mathbf{r}_2) \pm \Psi_\text{dist.}(\mathbf{r}_2,\mathbf{r}_1)] % \varphi_1(\br_1)\varphi_2(\br_2)\pm \varphi_2(\br_1)\varphi_1(\br_2)]
For more particles we have to include all possible permutations
N! permutations of N objects
A permutation \pi may be represented by a reordering of 1,\ldots N
e.g. \pi=(312) for N=3
Equivalently a function \pi of 1,\ldots N: \pi(1)=3, \pi(2)=1, \pi(3)=2
\mathrm{sgn}(\pi) is the signature of the permutation
\pm1 for \pi involving an even (odd) number of exchanges
\mathcal{S}=\frac{1}{N!}\sum_{\pi} P_\pi, \qquad \mathcal{A}=\frac{1}{N!}\sum_{\pi} \mathrm{sgn}(\pi)P_\pi
P_\pi is permutation operator for permutation \pi
For two particles there are two permutations: \pi=(12) and \pi=(21)
P_{(21)}\Psi(\mathbf{r}_1,\mathbf{r}_2) = \Psi(\mathbf{r}_2,\mathbf{r}_1)
\begin{aligned} \lvert{\Psi^{S}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}}\rangle&=\sqrt{\frac{N!}{\prod_{\alpha}N_{\alpha}!}}\mathcal{S}\,\varphi_{\alpha_{1}}(\mathbf{r_{1}})\varphi_{\alpha_{2}}(\mathbf{r_{2}})\cdots\varphi_{\alpha_{N}}(\mathbf{r_{N}}) \nonumber \\ \lvert{\Psi^{A}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}}\rangle&=\sqrt{N!}\mathcal{A}\,\varphi_{\alpha_{1}}(\mathbf{r_{1}})\varphi_{\alpha_{2}}(\mathbf{r_{2}})\cdots\varphi_{\alpha_{N}}(\mathbf{r_{N}}) \end{aligned}
\begin{aligned} \lvert{\Psi^{S}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}}\rangle&=\sqrt{\frac{1}{N!\prod_{\alpha}N_{\alpha}!}}\sum_\pi\varphi_{\alpha_{1}}(\mathbf{r_{\pi(1)}})\varphi_{\alpha_{2}}(\mathbf{r_{\pi(2)}})\cdots\varphi_{\alpha_{N}}(\mathbf{r_{\pi(N)}})\\ \lvert{\Psi^{A}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}}\rangle&=\sqrt{\frac{1}{N!}}\sum_\pi \mathrm{sgn}(\pi)\varphi_{\alpha_{1}}(\mathbf{r_{\pi(1)}})\varphi_{\alpha_{2}}(\mathbf{r_{\pi(2)}})\cdots\varphi_{\alpha_{N}}(\mathbf{r_{\pi(N)}}) \end{aligned}
\lvert{\Psi^{S}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}}\rangle=\sqrt{\frac{1}{N!\prod_{\alpha}N_{\alpha}!}}\sum_\pi\varphi_{\alpha_{\pi(1)}}(\mathbf{r_{1}})\varphi_{\alpha_{\pi(2)}}(\mathbf{r_2})\cdots\varphi_{\alpha_{\pi(N)}}(\mathbf{r_N})
Check
Show that these are normalized wavefunctions if the single particle state \lvert{\varphi_\alpha}\rangle are orthonormal
State is characterized only by occupation numbers \{N_{\alpha}\}. Use these as a label instead
Caution: To fix the sign of the fermion wavefunction, have to choose an order e.g. \varphi_{\alpha_{1}}(\mathbf{r_{1}})\varphi_{\alpha_{2}}(\mathbf{r_{2}})\cdots\varphi_{\alpha_{N}}(\mathbf{r_{N}})
The total energy is
E=\sum_{i=1}^{N}E_{\alpha_{i}}=\sum_{\alpha}N_{\alpha} E_{\alpha}
\lvert{\Psi^{A}_{\alpha_{1}\alpha_{2}\cdots\alpha_{N}}}\rangle=\frac{1}{\sqrt{N!}}\begin{vmatrix} \varphi_{\alpha_{1}}(\mathbf{r_{1}}) & \varphi_{\alpha_{1}}(\mathbf{r_{2}}) & \cdots & \varphi_{\alpha_{1}}(\mathbf{r_{N}}) \\ \varphi_{\alpha_{2}}(\mathbf{r_{1}}) & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \varphi_{\alpha_{N}}(\mathbf{r_{1}}) & \cdots & \cdots & \varphi_{\alpha_{N}}(\mathbf{r_{N}}) \end{vmatrix}
\varphi_{n}(x)=\frac{1}{\sqrt{L}}\exp\left(ik_n x\right)
\Psi^{S}(x_{1},x_{2},\ldots x_{N})=\frac{1}{L^{N/2}}
Fill each level with one particle, starting at the bottom (Fermi sea)
N odd: n=-(N-1)/2, -(N-3)/2,\ldots, -1, 0, 1 \ldots (N-1)/2
N even: decide whether to put the last particle at n=\pm N/2
z_{i}=\exp(2 \pi i x_{i}/L)
\Psi_0(x_1,\ldots, x_N)=\begin{vmatrix} z_{1}^{-(N-1)/2} & z_{2}^{-(N-1)/2} & \cdots & z_{N}^{-(N-1)/2} \\ z_{1}^{-(N-3)/2} & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ z_{1}^{(N-1)/2} & \cdots & \cdots & z_{N}^{(N-1)/2} \end{vmatrix}
\begin{aligned} \Psi_0(x_1,x_2,x_3)&=\begin{vmatrix} z_{1}^{-1} & z_{2}^{-1} & z_{3}^{-1} \\ 1 & 1 & 1 \\ z_{1} & z_{2} & z_{3} \end{vmatrix} = \frac{z_{1}}{z_{2}}-\frac{z_{2}}{z_{1}}+\frac{z_{3}}{z_{1}}-\frac{z_{1}}{z_{3}}+\frac{z_{2}}{z_{3}}-\frac{z_{3}}{z_{2}}\nonumber\\ &=\left(\sqrt{\frac{z_{3}}{z_{1}}}-\sqrt{\frac{z_{1}}{z_{3}}}\right)\left(\sqrt{\frac{z_{1}}{z_{2}}}-\sqrt{\frac{z_{2}}{z_{1}}}\right)\left(\sqrt{\frac{z_{2}}{z_{3}}}-\sqrt{\frac{z_{3}}{z_{2}}}\right) \nonumber\\ &\propto \sin\left(\frac{ \pi[x_{1}-x_{2}]}{L}\right)\sin\left(\frac{ \pi[x_{3}-x_{1}]}{L}\right)\sin\left(\frac{ \pi[x_{2}-x_{3}]}{L}\right) \end{aligned}
Check
Check it is periodic and totally antisymmetric
\Psi_0(x_1,\ldots, x_N)\propto\prod_{i<j}^{N} \sin\left(\frac{\pi[x_{i}-x_{j}]}{L}\right)
Check
Show this using the Vandermonde determinant \begin{vmatrix} 1 & 1 & \cdots & 1 \\ z_{1} & z_{2} & \cdots & \cdots \\ z_{1}^{2} & z_{2}^{2} & \cdots & \cdots \\ z_{1}^{N-1} & z_{2}^{N-1} & \cdots & z_{N}^{N-1} \end{vmatrix}=\prod_{i<j}^{N}(z_{j}-z_{i})
The wavevector of the last fermion added is called the Fermi wavevector k_\text{F}
Here k_\text{F}=\frac{(N-1)\pi}{L}
Fermi energy E_{F}=\frac{k_\text{F}^{2}}{2m} is the corresponding energy


One particle distribution is related to average density of particles \rho_1(x_1) = N \int dx_2\ldots dx_N \lvert\Psi(x_1,x_2,\ldots,x_N)\rvert^2
Note that density is always a number density (not mass density)
Normalization of the wavefunction implies \int dx \rho_1(x) = N
In a translationally invariant system like the fermion gas on a ring we expect the average density to be constant
g(x,y) \equiv N\int dx_2\ldots dx_N \Psi^{}(x,x_2,\ldots,x_N)\Psi^{*}(y,x_2,\ldots,x_N)
Check
Starting from the Slater determinant, show that g(x,y) for the ground state of the Fermi gas is \begin{aligned} g(x,y) &= \frac{1}{L}\sum_{|k|<k_\text{F}} e^{ik(x-y)} \longrightarrow \int_{-k_\text{F}}^{k_\text{F}} \frac{dk}{2\pi} e^{ik(x-y)} \\ &\longrightarrow n \frac{\sin \left[k_\text{F}(x-y)\right]}{k_\text{F}(x-y)} \end{aligned} where n \equiv \frac{k_\text{F}}{\pi} is the average density
Check
Starting from the Slater determinant, show that \rho_2(x_1,x_2) = n^2\left[1 - \left(\frac{\sin\left[k_\text{F}(x_1-x_2)\right]}{k_\text{F}(x_1-x_2)}\right)^2\right] This vanishes at x_1=x_2
H = -\frac{1}{2m}\sum_j \frac{\partial^2}{\partial x_j^2} + \overbrace{c\sum_{j<k}\delta(x_j-x_k)}^{\equiv H_\text{int}}
The second term is interaction between pairs of particles
For fermions, the interaction has no effect at all (\delta-function)!
For bosons with c\to \infty: eigenenergies coincide with those of free fermions, and eigenstates are modulus of fermion eigenstates
Check
Why?
\Psi_0(x_1,\ldots, x_N) = \prod_{i<j}^{N} \left|\sin\left(\frac{\pi[x_{i}-x_{j}]}{L}\right)\right|