## **Conditional Macros**

(This is PDF output.)

## 1 Bosons and Fermions

An N particle quantum system is described by a wavefunction of N arguments  $\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)$ . The starting point of many body quantum mechanics is that:

Systems of indistinguishable particles are described by **totally symmetric** or **totally antisymmetric** wavefunctions.

Just to be clear, totally symmetric means the wavefunction is unchanged by exchanging any two coordinates, whereas totally antisymmetric means that it changes sign.

A good fraction of this course is devoted to exploring the ramifications of this fact. Perhaps we should therefore give a *very* quick summary of why it appears to be true.

The first question is: what *are* indistinguishable particles? I'll give a theorist's answer. Indistinguishable particles are those described by Hamiltonians that are invariant under permuting the particle's labels. Thus the sum of single particle Hamiltonians

$$H = \sum_{i=1}^{N} \left[ -\frac{\nabla_i^2}{2m} + V(\mathbf{r_i}) \right]$$

[did you remember that  $\hbar = 1$ ?] describes indistinguishable particles while