Response and Correlation

Response & Correlation

  • Calculating eigenstates and eigenenergies is one thing, but what do experimentalists actually measure?

  • Want to understand how many body systems respond dynamically to an external probe

  • Time evolution of spontaneous fluctuations (thermal or quantum) obeys similar dynamics \longrightarrow fluctuation–dissipation relation

Quantum fluctuations: one oscillator

  • For a single (undamped) oscillator we have ground state fluctuations H = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 y^2 \langle{0}\rvert y^2 \lvert{0}\rangle = \frac{1}{2m \omega_0}
  • At finite temperature \langle\langle y^2\rangle\rangle=\mathop{\mathrm{tr}}\left[\rho\\, y^2\right] = \frac{\coth(\beta\omega_0/2)}{2m\omega_0} \rho = e^{-\beta H}/Z is equilibrium density matrix, and Z=\mathop{\mathrm{tr}}[e^{-\beta H}] is partition function

  • The double angular brackets \langle\langle (\cdots)\rangle\rangle denote that we are taking quantum and thermal expectations.

  • What about time dependent fluctuations? A natural candidate: \langle\langle y(t)y(0)\rangle\rangle, y(t) = e^{iHt} y e^{-iHt} (Heisenberg picture)

  • This gives the quantum noise spectrum

S(\omega) = \int_{-\infty}^\infty \langle\langle y(t)y(0)\rangle\rangle e^{i\omega t}\,dt.

  • BUT: since y(0) and y(t) do not commute with each other \langle\langle y(t)y(0)\rangle\rangle\neq \langle\langle y(0)y(t)\rangle\rangle=\langle\langle y(-t)y(0)\rangle\rangle, so

S(\omega)\neq S(-\omega)

  • Many of the properties of S(\omega) are most easily understood from spectral representation

  • Insert complete set of energy eigenstates between y(0) and y(t)

S(\omega) = 2\pi\sum_{m,n} \frac{e^{-\beta E_n}}{Z} |\langle{n}\rvert y\lvert{m}\rangle|^2 \delta(\omega-E_m+E_n)

  • Reason for asymmetry in S(\omega) is that term with \delta(\omega-E_m+E_n) is weighted by e^{-\beta E_n}, while term with \delta(\omega-E_n+E_m) has e^{-\beta E_m}

S(\omega) = S(-\omega) e^{\beta\omega}.

  • At zero temperature \beta\to\infty and we can see that S(\omega<0)=0.

  • Let’s evaluate S(\omega) for oscillator. The matrix elements are \langle{n}\rvert y\lvert{m}\rangle = \frac{1}{\sqrt{2m\omega_0}}\begin{cases} \sqrt{m+1} & \text{if } n=m+1 \\ \sqrt{m} & \text{if } n=m-1. \end{cases} \begin{align*} S(\omega)&=\frac{\pi}{m\omega_0} \sum_n \frac{e^{-\beta E_n}}{Z} \left[n\delta(\omega+\omega_0)+(n+1)\delta(\omega-\omega_0)\right]\nonumber\\ & = \frac{\pi}{m\omega_0}\left[n_\text{B}(\omega_0)\delta(\omega+\omega_0)+(n_\text{B}(\omega_0)+1)\delta(\omega-\omega_0)\right] \end{align*} n_\text{B}(\omega)\equiv \frac{1}{\exp\left(\beta\omega\right)-1} is Bose distribution function

\begin{align*} S(\omega)&=\frac{\pi}{m\omega_0} \sum_n \frac{e^{-\beta E_n}}{Z} \left[n\delta(\omega+\omega_0)+(n+1)\delta(\omega-\omega_0)\right]\nonumber\\ & = \frac{\pi}{m\omega_0}\left[n_\text{B}(\omega_0)\delta(\omega+\omega_0)+(n_\text{B}(\omega_0)+1)\delta(\omega-\omega_0)\right] \end{align*}

  • Shows the predicted asymmetry between positive and negative frequencies. We can check that \int S(\omega)\frac{d\omega}{2\pi} = \langle\langle y^2\rangle\rangle= \frac{\coth(\beta\omega_0/2)}{2m\omega_0} as we found before.

Classical limit \beta\omega\to 0

\begin{align*} S(\omega)&= \frac{\pi}{m\omega_0}\left[n_\text{B}(\omega_0)\delta(\omega+\omega_0)+(n_\text{B}(\omega_0)+1)\delta(\omega-\omega_0)\right]\\\\ &\to \frac{k_\text{B}T}{2m\omega_0^2} \times 2\pi\left[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)\right] \end{align*}

  • Consistent with equipartition: \frac{1}{2}m\omega_0^2 \langle y^2\rangle=\frac{1}{2}k_\text{B}T

Many oscillators

  • We can express y(t) in terms of normal modes as y(t) = \sum_k \left[c^{}_k a^\dagger_k(t) + c_k^* a^{\vphantom{\dagger}}_k(t)\right]
  • Time evolution of mode operators is

a^\dagger_k(t) = e^{i\omega_k t}a^\dagger_k,\quad a^{\vphantom{\dagger}}_k(t) = e^{-i\omega_k t}a^{\vphantom{\dagger}}_k

  • Repeating calculation of S(\omega) gives

\begin{align*} S(\omega)= 2\pi\sum_k |c_k|^2\left[n_\text{B}(\omega_k)\delta(\omega+\omega_k)+(n_\text{B}(\omega_k)+1)\delta(\omega-\omega_k)\right] \end{align*}

  • In continuum limit sum of \delta(\omega\pm\omega_k)\longrightarrow smooth S(\omega)

Response of oscillator system

  • Solve Heisenberg equations of motion H = \sum_k \omega_k a^\dagger_ka^{\vphantom{\dagger}}_k - f(t)y, where y is written in terms of normal modes \frac{da^{\vphantom{\dagger}}_k}{dt} = -i\omega_k a^{\vphantom{\dagger}}_k +i c_k f(t),

  • Solution is a^{\vphantom{\dagger}}_k(t) = e^{-i\omega_k t}a^{\vphantom{\dagger}}_k(0)+a_{k,f}(t) with a^{\vphantom{\dagger}}_{k,f}(\omega) \equiv \frac{c_k}{\omega_k-\omega-i0} f(\omega). (-i0 introduced for response analytic in UHP i.e. causal)

  • Response of a^{\vphantom{\dagger}}_k(t)\longrightarrow y(t) gives

y(\omega) = \sum_k |c_k|^2\left[\frac{1}{\omega_k-\omega-i0}+\frac{1}{\omega_k+\omega+i0}\right]f(\omega).

  • This defines the response function \chi(\omega) \chi(\omega)\equiv \frac{y(\omega)}{f(\omega)} = \sum_k |c_k|^2\left[\frac{1}{\omega_k-\omega-i0}+\frac{1}{\omega_k+\omega+i0}\right]

  • Then use…

\text{Im} \frac{1}{x\mp i0} = \pm\pi\delta(x),

\operatorname{Im}\chi(\omega) =\mathrm{sgn}(\omega)\pi\sum_k |c_k|^2\delta(\omega_k-\omega)

  • S(\omega) and \operatorname{Im}\chi(\omega) are then related by

S(\omega) = 2\operatorname{Im}\chi(\omega)\left[n_\text{B}(\omega)+1\right]

  • This is a quantum fluctuation dissipation relation

Check

Check that in the classical limit (k_\text{B}T\gg \hbar \omega) S(\omega) = 2\operatorname{Im}\chi(\omega)\left[n_\text{B}(\omega)+1\right] reduces to S(\omega)=\frac{2k_\text{B}T}{\omega} \operatorname{Im}\chi(\omega) Consistent with classical equipartition

Golden Rule and Dissipation

  • We saw that classically \text{Im}\,\chi(\omega) related to dissipation

  • FDT relates \operatorname{Im}\chi(\omega) and S(\omega). How is S(\omega) related to dissipation?

  • Regard driving force as perturbation that causes transitions between energy eigenstates H_\text{pert} = - f(t)y with f(t)=f_0\cos\omega t

  • In lowest order perturbation theory, system makes transitions \pm\omega in energy

  • Rates found from Fermi’s golden rule

\Gamma_{n\to m} = 2\pi \left(\frac{f_0}{2}\right)^2|\langle{n}\rvert y\lvert{m}\rangle|^2 \delta(\pm\omega+E_m-E_n).

  • Total rate is sum over all initial (\lvert{n}\rangle) and final states (\lvert{m}\rangle), including probability e^{-\beta E_n}/Z of finding the system initially in \lvert{n}\rangle

  • c.f. spectral representation of S(\omega)

S(\omega) = 2\pi\sum_{m,n} \frac{e^{-\beta E_n}}{Z} |\langle{n}\rvert y\lvert{m}\rangle|^2 \delta(\omega-E_m+E_n)

\Gamma(\omega) = S(\omega)\left(\frac{f_0}{2}\right)^2

  • S(\omega) measures rate of transitions absorbing energy \omega; S(-\omega) the rate for emitting energy \omega.

  • Asymmetry of S(\omega) is asymmetry between emission and absorption of radiation

  • The rate of energy absorption is

\omega\Gamma(\omega) = \omega S(\omega)\left(\frac{f_0}{2}\right)^2 = \frac{1}{2}\omega\operatorname{Im}\chi(\omega)\left[n_\text{B}(\omega)+1\right]f_0^2

\omega\Gamma(\omega) = \omega S(\omega)\left(\frac{f_0}{2}\right)^2 = \frac{1}{2}\omega\operatorname{Im}\chi(\omega)\left[n_\text{B}(\omega)+1\right]f_0^2

Check

Compare with \begin{align*} W_\text{diss} = \langle f(t) \dot y(t)\rangle = \frac{1}{2}\omega\operatorname{Im}\chi(\omega)f_0^2 \end{align*} They agree when n_\text{B}(\omega)\to 0: energy of transition being much larger than thermal energy \hbar\omega\gg k_B T.

Linear Response: Formal Theory

  • So far, considered only response of linear systems!

  • How do we talk about linear response in general?

Kubo Formula

  • How does observable A depend on \lambda_t, which appears (for small variations) linearly in the Hamiltonian

H_t = H_0 - \lambda_t B?

  • B=-\frac{\partial H}{\partial \lambda} is generalized force; \lambda generalized displacement
  • In the interaction picture \lvert{\Psi_I(t)}\rangle \equiv e^{iH_0 t}\lvert{\Psi(t)}\rangle i\frac{\partial \lvert{\Psi_I(t)}\rangle}{\partial t} = -\lambda_t B_I(t) \lvert{\Psi_I(t)}\rangle, where B_I(t) = e^{iH_0 t}B e^{-iH_0 t}

  • Result of first order time dependent perturbation theory is \lvert{\Psi_I(t)}\rangle=\lvert{\Psi(0)}\rangle+\lvert{\Psi^{(1)}_I(t)}\rangle+\cdots, with

\lvert{\Psi^{(1)}_I(t)}\rangle = i\int_0^t dt' \lambda_{t'} B_I(t') \lvert{\Psi(0)}\rangle

\begin{align*} &\Braket{\Psi(t)|A|\Psi(t)} = \Braket{\Psi_I(t)|A_I(t) |\Psi_I(t)} \nonumber\\ &=\Braket{\Psi(0)|A_I(t)|\Psi(0)} +i \int_0^t dt' \lambda_{t'}\Braket{\Psi(0)| \left[A_I(t),B_I(t')\right] |\Psi(0)} \end{align*}

  • Mixed states can be treated by averaging over a distribution of quantum states \langle\cdots \rangle \longrightarrow \langle\langle\cdots\rangle\rangle

  • \chi_{AB}(t) of A due to perturbation that couples to B

\chi_{AB}(t) = i\langle\langle\left[A_I(t),B_I(0)\right]\rangle\rangle,\quad t>0. (Normally write A(t) rather than A_I(t): Heisenberg picture for the unperturbed problem)

  • This is the Kubo formula. It expresses the response of a system in terms of the dynamics of the unperturbed system.

Fluctuation Dissipation Theorem (general)

  • Start from the correlation function

S_{AB}(t) \equiv \langle\langle A_I(t)B_I(0)\rangle\rangle

  • Recalling that \langle\langle\cdots \rangle\rangle = \frac{1}{Z}\mathop{\mathrm{tr}}\left[e^{-\beta H}\cdots\right], you should be able to show that

S_{AB}(t) = S_{BA}(-t-i\beta)

Check

Hint: use the cyclic property of the trace.

S_{AB}(t) = S_{BA}(-t-i\beta).

  • Fourier transforming, we arrive at

S_{AB}(\omega) = e^{\beta\omega} S_{BA}(-\omega) (we’ve seen this before!)

  • \chi_{AB}(t) (a commutator) can be written in terms of S_{AB}(\omega)

\begin{align*} \chi_{AB}(t) &= \begin{cases} i\left[S_{AB}(t)-S_{BA}(-t)\right] & t>0\\ 0 & t<0 \end{cases}\\ &= i\theta(t)\left[S_{AB}(t)-S_{BA}(-t)\right] \end{align*}

\chi_{AB}(t)=i\theta(t)\left[S_{AB}(t)-S_{BA}(-t)\right]

  • \chi_{AB}(\omega) can then be expressed as the convolution. The Fourier transform of the step function is

\tilde\theta(\omega) = \frac{i}{\omega+i0} \begin{align*} \chi_{AB}(\omega)&= -\int \frac{d\omega'}{2\pi}\frac{S_{AB}(\omega')-S_{BA}(-\omega')}{\omega-\omega'+i0}\\ &=-\int \frac{d\omega'}{2\pi}\frac{S_{AB}(\omega')\left[1-e^{-\beta\omega'}\right]}{\omega-\omega'+i0} \end{align*}

  • To make sense of this formula, use the Kramers–Kronig relation \begin{align*} \chi_{AB}(\omega) &=\operatorname{Re}\chi_{AB}(\omega) + i\operatorname{Im}\chi_{AB}(\omega)\\ &= \mathcal{P}\int_{-\infty}^\infty \frac{d\omega'}{\pi}\frac{\operatorname{Im}\chi_{AB}(\omega')}{\omega'-\omega} + i\operatorname{Im}\chi_{AB}(\omega)\\ &= \int_{-\infty}^\infty \frac{d\omega'}{\pi}\frac{\operatorname{Im}\chi_{AB}(\omega')}{\omega'-\omega-i0}, \end{align*} where we used \frac{1}{x+i0} = \mathcal{P}\frac{1}{x} -i\pi\delta(x)
  • Finally! S_{AB}(\omega) = 2\operatorname{Im}\chi_{AB}(\omega)\left[n_\text{B}(\omega)+1\right]

Spectral Representation

The quantites \chi_{AB}(\omega) and S_{AB}(\omega) have spectral representations in terms of energy eigenstates and eigenvalues

S_{AB}(\omega) = 2\pi\sum_{m,n} \frac{e^{-\beta E_m}}{Z} \Braket{m|A|n}\Braket{n|B|m} \delta(\omega-E_n+E_m)

Check

Use the spectral representation to prove the fluctuation dissipation relation

  • S_{AA}(\omega) can be interpreted in terms of Fermi golden rule, as we saw for oscillator. Notice that S_{AA}(\omega)>0

Response of Matter

  • Back to many body physics!

Density Response

  • Apply time dependent potential corresponding to term in Hamiltonian

H_\text{pert} = \sum_{j=1}^N V(\mathbf{r}_i,t) = \int V(\mathbf{r},t)\rho(\mathbf{r})\, d\mathbf{r}= \frac{1}{L^3}\sum_\mathbf{q}V_\mathbf{q}(t) \rho_{-\mathbf{q}}

  • Perturbation couples to the density: how is density affected?

  • In a translationally invariant system

\langle\langle \rho_\mathbf{q}(t)\rangle\rangle = -\frac{1}{L^3} \int_{-\infty}^t \chi^{\rho}_\mathbf{q}(t-t') V_\mathbf{q}(t)\,dt',

where the density response function \chi^\rho_\mathbf{q}(t) is

\chi_\rho(\mathbf{q},t) = i\langle\langle\left[\rho_\mathbf{q}(t),\rho_{-\mathbf{q}}(0)\right]\rangle\rangle

  • General theory applies with A=\rho_\mathbf{q} and B=\rho_{-\mathbf{q}}. At T=0 S_\rho(\mathbf{q},\omega) = 2\pi\sum_{n} |\langle{0}\rvert\rho_\mathbf{q}\lvert{n}\rangle|^2 \delta(\omega-E_n+E_0)

  • This is the dynamical structure factor, on account of its importance in scattering experiments.

  • The static structure factor is S_\rho(\mathbf{q}) = \int S_\rho(\mathbf{q},\omega) \frac{d\omega}{2\pi} = \langle\langle\rho_\mathbf{q}\rho_{-\mathbf{q}}\rangle\rangle

Sum rules

  • S_\rho(\mathbf{q},\omega) obeys certain general relations irrespective of system

  • If interaction depends only on density \left[H_\text{int},\rho_\mathbf{q}\right]=0

  • \left[H,\rho_\mathbf{q}\right]=\left[T,\rho_\mathbf{q}\right]

T = -\frac{1}{2m}\sum_{j=1}^N \nabla_i^2

  • Taking \rho_\mathbf{q}=\sum_{j=1}^N e^{-i\mathbf{q}\cdot\mathbf{r}_j}, we find

[[H,\rho_\mathbf{q}],\rho_{-\mathbf{q}}] = -\frac{N\mathbf{q}^2}{m}

  • Evaluate by introducing resolution of the identity \sum_n \lvert{n}\rangle\langle{n}\rvert=1

\begin{align*} \braket{0|[[H,\rho_\mathbf{q}],\rho_{-\mathbf{q}}]|0}&=\braket{0|H\rho_\mathbf{q}\rho_{-\mathbf{q}}- \rho_\mathbf{q}H\rho_{-\mathbf{q}}-\rho_{-\mathbf{q}} H\rho_\mathbf{q}+\rho_{-\mathbf{q}}\rho_\mathbf{q}H|0}\\ &=2\sum_n|\langle{0}\rvert\rho_\mathbf{q}\lvert{n}\rangle|^2\left(E_0-E_n\right) \end{align*}

  • We can relate this to S(\mathbf{q},\omega) using spectral representation

S_\rho(\mathbf{q},\omega) = 2\pi\sum_{n} |\langle{0}\rvert\rho_\mathbf{q}\lvert{n}\rangle|^2 \delta(\omega-E_n+E_0) to give the f-sum rule

\int_{-\infty}^\infty \omega S(\mathbf{q},\omega) \frac{d\omega}{2\pi}= \frac{N\mathbf{q}^2}{2m}

Compressibility sum rule

  • Compressibility

\beta=-\frac{1}{V}\frac{\partial V}{\partial p}. (inverse of Bulk modulus)

  • p = -\frac{\partial E_0}{\partial V} at T=0. If E_0 = V \epsilon(\rho), then

\beta^{-1} = \rho^2 \epsilon''(\rho).

\beta^{-1} = \rho^2 \epsilon''(\rho).

  • In the presence of a potential V(\mathbf{r}), energy density is

\epsilon(\rho_0+\delta\rho) = \frac{1}{2\beta\rho_0^2} \left[\delta\rho\right]^2 + V(\mathbf{r})\delta\rho

  • Minimizing with respect to \delta\rho gives

\epsilon(V(\mathbf{r})) = - \frac{\beta\rho_0^2}{2} \left[V(\mathbf{r})\right]^2

  • Compare with perturbation theory
  • Change in energy due to perturbation

\sum_j V_0 \cos(\mathbf{q}\cdot \mathbf{r}_j) = \frac{V_0}{2}\left[\rho_\mathbf{q}+\rho_{-\mathbf{q}}\right]

  • Second order perturbation theory for ground state E^{(2)} =\frac{V_0^2}{4} \sum_{n\neq 0} \frac{|\braket{0|\rho_\mathbf{q}|n}|^2}{E_0-E_n} =-\frac{V_0^2}{4}\int_0^\infty \frac{S(\mathbf{q},\omega)}{\omega}\frac{d\omega}{2\pi} (first order vanishes)
  • Compare with

\epsilon(V(\mathbf{r})) = - \frac{\beta\rho_0^2}{2} \left[V(\mathbf{r})\right]^2

  • This gives the compressibility sum rule at zero temperature

\lim_{\mathbf{q}\to 0}\int_0^\infty \frac{S(\mathbf{q},\omega)}{\omega}\frac{d\omega}{2\pi} = \frac{N\rho\beta}{2}.

  • Compressibility sum rule often written in terms of speed of sound c = (\beta m \rho)^{-1/2}

\lim_{\mathbf{q}\to 0}\int_0^\infty \frac{S(\mathbf{q},\omega)}{\omega}\frac{d\omega}{2\pi} = \frac{N}{2mc^2}.

Single Mode Approximation

  • Some systems (e.g Bose gases), are well described by S_\rho(\mathbf{q},\omega) \sim 2\pi S_\rho(\mathbf{q}) \delta(\omega - \omega(\mathbf{q})), for low \mathbf{q}, where \omega(\mathbf{q}) is dispersion relation of collective excitations (e.g. Bogoliubov modes)

  • In this approximation, f-sum rule tells us that

S_\rho(\mathbf{q}) = \frac{N\mathbf{q}^2}{2m\omega(\mathbf{q})}.

Example 1: BEC (no interactions)

  • Excitations out of the condensate are free particles \omega(\mathbf{q}) = \frac{\mathbf{q}^2}{2m} S_\rho(\mathbf{q}) = N.

  • Completely uncorrelated particle positions (Poisson statistics).

Example 2: interacting BEC / elastic chain

  • \omega(\mathbf{q}) = c|\mathbf{q}| i.e. linear dispersion with finite speed of sound

S_\rho(\mathbf{q}) = \frac{N|\mathbf{q}|}{2mc}.

  • Density fluctuations vanish as wavevector goes to zero, indicating long-range correlations between positions in the ground state.

Check

Check compressibility sum rule

Example 3: FQHE

  • Assuming single mode approximation

S_\rho(\mathbf{q},\omega) \sim 2\pi S_\rho(\mathbf{q}) \delta(\omega - \omega(\mathbf{q}))

  • Can use S_\rho(\mathbf{q}) to find dispersion (see e.g. Girvin (2002) for FQHE)

\omega(\mathbf{q}) = \frac{N\mathbf{q}^2}{2m S_\rho(\mathbf{q})}

Girvin, Steven M. 2002. “The Quantum Hall Effect: Novel Excitations and Broken Symmetries.” In Aspects Topologiques de La Physique En Basse Dimension. Topological Aspects of Low Dimensional Systems: Session LXIX. 7–31 July 1998, 53–175. Springer.