
Response and Correlation





Calculating eigenstates and eigenenergies is one thing, but what do experimentalists
actually measure?
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1 Probing Many Body systems

Our first encounters with quantum mechanics involve finding the energies of stationary
states, whether of the Hydrogen atom or a box of radiation in thermal equilibrium.
Finding the energy of metallic Sodium (to pick a simple metal) is important if you want
to be able calculate the melting temperature, but most experiments probe properties of
a state of matter that are not simply contained in thermodynamic functions of state. For
example, seeing that a metal is reflective involves shining light and measuring how it is
scattered.

When a theorist looks at an experimentalist, what they see is a machine for measuring
response functions, which encode the response of a system to external perturbations.
The theorist’s job is to understand what kinds of response are possible (e.g. metallic,
insulating, superconducting), and hopefully to actually calculate response functions
for a particular model. Often this is what really characterizes a state of matter: the
thermodynamic differences between a metal and a superconductor are far less significant
that the differing electromagnetic response.

In this lecture we will see how response functions are encoded in the eigenvalues and
eigenstates of a many body system, and their general features. In fact, you’ve probably
already met response functions in another guise: as Green’s functions.
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2 Response of a Damped Oscillator

On the grounds that it’s always best to start with a single degree of freedom first, we
introduce the idea of response functions for (sigh) the harmonic oscillator.

2.1 Green’s Function for the Damped Oscillator

Consider your old friend, the damped driven oscillator

𝑚 ̈𝑦 + 𝑚𝜔2
0𝑦 + 𝛾 ̇𝑦 = 𝑓(𝑡). (2.1)

Solving this problem, as you’ve doubtless done many times, involves finding 𝑦(𝑡) given
𝑓(𝑡). Without going any further, what can we say about such a solution? Equation 2.1 is
linear, which means that 𝑦(𝑡) depends linearly on 𝑓(𝑡). By the principle of superposition
we can immediately write

𝑦(𝑡) = ∫ 𝜒(𝑡, 𝑠)𝑓(𝑠) 𝑑𝑠.

𝜒(𝑡, 𝑠) is our first example of a response function, Green’s function, or susceptibility.
On general grounds, we can say two more things about 𝜒(𝑡, 𝑠). First, that it is causal,
meaning that, since effect follows cause:

𝜒(𝑡, 𝑠) = 0, for 𝑡 < 𝑠.

Second, since the LHS of Equation 2.1 has no explicit time dependence, 𝜒 is really
a function only of 𝑡 − 𝑠. We can certainly imagine situations where this is not true.
Causality, however, seems pretty watertight (even if we don’t understand why).

We can interpret 𝜒(𝑡) as the solution of Equation 2.1 to a 𝛿-function force at 𝑡 = 0.

𝑚𝜒̈ + 𝑚𝜔2
0𝜒 + 𝛾𝜒̇ = 𝛿(𝑡). (2.2)

There are at least two ways to go about finding 𝜒(𝑡) in this case. The first is most
direct: recall that the free motion of the oscillator can be written in terms of the complex
exponential 𝑒−𝑖𝜔𝑡, where 𝜔 satisfies
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2 Response of a Damped Oscillator

𝑚𝜔2 + 𝑖𝛾𝜔 − 𝑚𝜔2
0 = 0,

so that

𝜔± = ±√𝜔2
0 − 𝛾2

4𝑚2 − 𝑖 𝛾
2𝑚

≡ ±𝜔1 − 𝑖 𝛾
2𝑚

.

Since 𝜒(𝑡) = 0 for 𝑡 < 0, we can get a 𝛿-function in Equation 2.2 by choosing a
superposition of 𝑒−𝑖𝜔±𝑡 such that 𝜒′(0+) = 𝑚−1

𝜒(𝑡) = {
0 𝑡 ≤ 0

1
𝑚𝜔1

sin(𝜔1𝑡)𝑒−𝛾/2𝑚𝑡 𝑡 > 0.

The second method is to solve the equation Equation 2.2 in the Fourier domain, where it
becomes

[−𝑚𝜔2 + 𝑚𝜔2
0 − 𝑖𝛾𝜔] 𝜒̃(𝜔) = 1,

so that

𝜒̃(𝜔) = 1
𝑚(𝜔2

0 − 𝜔2) − 𝑖𝛾𝜔
. (2.3)

I’m going to assume that you’ve plotted the amplitude and phase of this function enough
times in your life already. Fourier transforming back to the time domain

𝜒(𝑡) = ∫
∞

−∞
𝜒̃(𝜔)𝑒−𝑖𝜔𝑡 𝑑𝜔

2𝜋
= − 1

𝑚
∫

∞

−∞

𝑒−𝑖𝜔𝑡

(𝜔 − 𝜔+)(𝜔 − 𝜔−)
𝑑𝜔
2𝜋

. (2.4)

The integrand has two poles in the lower half plane at 𝜔±, on account of 𝛾 being positive,
which in turn follows from (or defines?) the direction of time. The fact that the frequency
response is analytic in the upper half plane is equivalent to causality in the real time
response. This is because for 𝑡 < 0 we can close the contour in Equation 2.4 in the upper
half plane, avoiding the poles and getting zero by Cauchy’s theorem. For 𝑡 > 0 we close
in the lower half plane (not forgetting the - from going the other way) and use the residue
theorem to give

𝜒(𝑡) = 𝑖
𝑚

( 𝑒−𝑖𝜔+𝑡

𝜔+ − 𝜔−
+ 𝑒−𝑖𝜔−𝑡

𝜔− − 𝜔+
) = 1

𝑚𝜔1
sin(𝜔1𝑡)𝑒−𝛾/2𝑚𝑡 𝑡 > 0,

as before.
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2.2 Properties of the Susceptibility

2.2 Properties of the Susceptibility

(I’m going to drop the tilde from 𝜒̃(𝜔), as there’s no real chance of confusion.)

We’ve already argued that causality dictates that 𝜒(𝜔) be analytic in the upper half
plane. What is the implication for the response measured at real frequencies? Let’s split
𝜒(𝜔) into its real and imaginary parts

𝜒(𝜔) = 𝜒′(𝜔) + 𝑖𝜒″(𝜔).

Then analyticity in the UHP implies the Kramers–Kronig relation

𝜒′(𝜔) = 𝒫 ∫
∞

−∞

𝑑𝜔′

𝜋
𝜒″(𝜔′)
𝜔′ − 𝜔

, (2.5)

where 𝒫 denotes the principal part. Since 𝜒(𝑡) is real, we have 𝜒(−𝜔)∗ = 𝜒(𝜔), so that
𝜒′(𝜔) is an even function, while 𝜒″(𝜔) is odd.

LIGHTBULB Check

Check that Equation 2.3 satisfies Equation 2.5.

The real and imaginary parts encode different aspects of the response. The imaginary
part is related to the power dissipated by a driving force. For 𝑓 = 𝑓0 cos 𝜔𝑡 we have

𝑊diss = ⟨𝑓(𝑡) ̇𝑦(𝑡)⟩ = 1
2

𝜔𝜒″(𝜔)𝑓2
0 . (2.6)

For stability we must have 𝜔𝜒″(𝜔) > 0 (and even).

The real part is related to the shift in the energy of the system in the presence of a
driving force. Recalling that the applied force appears in the Hamiltonian as −𝑓(𝑡)𝑦(𝑡),
we find the time average

𝐸shift = −⟨𝑓(𝑡)𝑦(𝑡)⟩ = −1
2

𝜒′(𝜔)𝑓2
0

For the damped oscillator, the sign of 𝜒′(𝜔) changes at resonance. The drive lowers the
energy beneath the resonance, and raises it above.
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2 Response of a Damped Oscillator

2.3 Mechanical Model of Dissipation

When we move on to the quantum oscillator, we’re going to run into the problem that
we only know how to describe Hamiltonian time evolution in quantum mechanics, that
is, without dissipation. It’s possible to describe the damped oscillator in Hamiltonian
terms at the expense of explicitly introducing the degrees of freedom that are doing the
dissipating. You’ve met this in the realm of classical mechanics when you discuss the
mechanical impedance of an elastic string.

Attaching an undamped oscillator to a string under tension 𝜏 gives the coupled system

𝑚 ̈𝑦 + 𝑚𝜔2
0𝑦 = 𝜏𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
∣
𝑥=0

𝜕2𝑢
𝜕𝑥2 − 1

𝑐2
𝜕2𝑢
𝜕𝑡2 = 0, 𝑥 > 0 𝑢(0, 𝑡) = 𝑦(𝑡).

The model was orinally studied by Horace Lamb in a 1900 paper titled “On a Peculiarity
of the Wave‐System due to the Free Vibrations of a Nucleus in an Extended Medium”.
Lamb wasn’t talking about the nucleus of the atom — that hadn’t yet been discovered —
but of any body coupled to a continuum.

If nothing is propagating towards the oscillator from the string, only away from it, we
can write

𝑢(𝑥, 𝑡) = 𝑦(𝑡 − 𝑥/𝑐). (2.7)

This gives 𝜕𝑢(𝑥,𝑡)
𝜕𝑥 ∥

𝑥=0
= − ̇𝑦/𝑐, and hence a closed equation for 𝑦

̈𝑦 + 𝜔2
0𝑦 + 𝛾 ̇𝑦 = 0.

with 𝛾 = 𝜏/𝑐. Note that this is the impedance of the string.

The nice thing about this model is that it is very explicit. In particular, we can see
exactly where the arrow of time comes from: the assumption Equation 2.7. Had we
somehow arranged to have an incoming wave that matched the motion of the oscillator,
we would arrive at an equation of motion for the oscillator with damping of the other
sign.

Although we’ve introduced response functions for a linear system, this isn’t a requirement
(fortunately). More generally, we can ask how the (nonlinear) motion of a system is
modified at first order in some perturbation – a force in the case of the oscillator. The
susceptibility describes the linear response of the system. Many quantities that we meet
in elementary physics such as elastic constants and conductance (electrical and thermal)
are really linear response functions that represent a convenient first approximation to
the true nonlinear behaviour.
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2.4 Finite Temperature Fluctuations

2.4 Finite Temperature Fluctuations

Equation 2.7 corresponds to a ‘zero temperature’ environment. Finite temperature
corresponds to an ‘incoming’ wave describing the thermal occupation of the Fourier
modes of the string, which would cause Brownian motion of the oscillator. The energy
scale of this motion is 𝑘B𝑇.

We can easily extend the earlier discussion to finite temperature by writing 𝑢(𝑥, 𝑡) in
terms of components approaching and leaving the oscillator

𝑢(𝑥, 𝑡) = 𝑢in(𝑡 + 𝑥/𝑐) + 𝑢out(𝑡 − 𝑥/𝑐).

The force on the oscillator is proportional to

𝜕𝑢(𝑥, 𝑡)
𝜕𝑥

∣
𝑥=0

= 𝑐−1 (𝑢′
in(𝑡) − 𝑢′

out(𝑡)) = 𝑐−1 (2𝑢′
in(𝑡) − ̇𝑦(𝑡)) .

The equation of motion can then be written as

𝑚 ̈𝑦 + 𝑚𝜔2
0𝑦 + 𝛾 ̇𝑦 = 𝑓noise(𝑡), (2.8)

where 𝑓noise(𝑡) = 2𝜏
𝑐 𝑢′

in(𝑡) is a random force due to thermal fluctuations. As this derivation
makes clear, the noise and the damping have a common origin.

On account of the infinite bandwidth of the string, 𝑓noise is white noise

𝔼 [𝑓noise(𝑡)𝑓noise(𝑡′)] = 2𝛾𝑘B𝑇 𝛿(𝑡 − 𝑡′). (2.9)

A differential equation driven by noise like Equation 2.8 is known as a Langevin equation
in physics and as a stochastic differential equation (SDE) in mathematics.

INFO Note

Actually, no self-respecting mathematician would write something like Equation 2.8,
implying as it does that the instantaneous acceleration of the oscillator is infinite.
Physicists, on the other hand, know that this is just an approximation caused by
setting certain time scales to zero.

The mathematical way to write an equation like Equation 2.8 is as the pair of first order
SDEs
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2 Response of a Damped Oscillator

𝑑𝑦 = 𝑝
𝑚

𝑑𝑡

𝑑𝑝 = −𝑚 [𝜔2
0𝑦 + 𝛾𝑝] 𝑑𝑡 + √2𝛾𝑘B𝑇𝑑𝑊,

where 𝑊 is a Wiener process. Writing the equation in terms of differentials avoids the
awkward subject of infinite forces.

The motion of the oscillator in response to the thermal noise can be calculated using the
response function. In the frequency domain, Equation 2.9 is

𝔼 [ ̃𝑓noise(𝜔) ̃𝑓noise(𝜔′)] = 4𝜋𝛾𝑘B𝑇 𝛿(𝜔 + 𝜔′),

giving a power spectrum of oscillator fluctuations

𝔼 [ ̃𝑦(𝜔) ̃𝑦(𝜔′)] = 4𝜋𝛾𝑘B𝑇 |𝜒(𝜔)|2𝛿(𝜔 + 𝜔′). (2.10)

Noting that

𝜒″(𝜔) = 𝛾𝜔
(𝜔2

0 − 𝜔2)2 + 𝛾2𝜔2 = 𝛾𝜔|𝜒(𝜔)|2

we can write Equation 2.10 as

𝔼 [ ̃𝑦(𝜔) ̃𝑦(𝜔′)] = 2𝜋𝑆(𝜔)𝛿(𝜔 + 𝜔′), (2.11)

where

𝑆(𝜔) = 2𝑘B𝑇
𝜔

𝜒″(𝜔). (2.12)

Note that 𝑆(𝜔) = 𝑆(−𝜔) on account of 𝜒″(𝜔) being odd. This result tells us that the
fluctuations and response of our oscillator are related to each other. This is actually
rather natural – the fluctuations are a response to the thermal noise felt by the system.
Since it is 𝜒″(𝜔) – the dissipative part of the response – that appears in Equation 2.12,
relations of this sort are called fluctuation–dissipation relations. We’ll meet the
quantum version next.
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2.5 Quantum Fluctuations

2.5 Quantum Fluctuations

Quantum mechanics provides another source of fluctuations. For a single (undamped)
oscillator

𝐻 = 𝑝2

2𝑚
+ 1

2
𝑚𝜔2

0𝑦2,

we have the ground state fluctuations

⟨0|𝑦2|0⟩ = 1
2𝑚𝜔0

,

while at finite temperature

⟨⟨𝑦2⟩⟩ = tr [𝜌 𝑦2] = coth(𝛽𝜔0/2)
2𝑚𝜔0

.

where 𝜌 = 𝑒−𝛽𝐻/𝑍 is the equilibrium density matrix, and 𝑍 = tr[𝑒−𝛽𝐻] is the partition
function. The double angular brackets ⟨⟨(⋯)⟩⟩ denote that we are taking quantum and
thermal expectations.

Now what about time dependent fluctuations? This is what was calculated in Equation 2.11
for the classical damped oscillator. A natural candidate is

⟨⟨𝑦(𝑡)𝑦(0)⟩⟩,

where 𝑦(𝑡) denotes the Heisenberg picture time evolution 𝑦(𝑡) = 𝑒𝑖𝐻𝑡𝑦𝑒−𝑖𝐻𝑡. This gives
for the quantum noise spectrum

𝑆(𝜔) = ∫
∞

−∞
⟨⟨𝑦(𝑡)𝑦(0)⟩⟩𝑒𝑖𝜔𝑡 𝑑𝑡. (2.13)

So far, this is a purely formal definition – we have to figure out what it means. The first
and most important thing to notice is that, since 𝑦(0) and 𝑦(𝑡) do not commute with
each other ⟨⟨𝑦(𝑡)𝑦(0)⟩⟩ ≠ ⟨⟨𝑦(0)𝑦(𝑡)⟩⟩ = ⟨⟨𝑦(−𝑡)𝑦(0)⟩⟩. Hence

𝑆(𝜔) ≠ 𝑆(−𝜔).

Many of the properties of this function are most easily understood from a spectral
representation, which is obtained by inserting a complete set of energy eigenstates
between 𝑦(0) and 𝑦(𝑡) in Equation 2.13. This gives
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2 Response of a Damped Oscillator

𝑆(𝜔) = 2𝜋 ∑
𝑚,𝑛

𝑒−𝛽𝐸𝑛

𝑍
|⟨𝑛|𝑦|𝑚⟩|2𝛿(𝜔 − 𝐸𝑚 + 𝐸𝑛). (2.14)

This expression is completely general, but already it is possible to see what is going on.
The reason for the asymmetry in 𝑆(𝜔) is that the term with 𝛿(𝜔 − 𝐸𝑚 + 𝐸𝑛) is weighted
by 𝑒−𝛽𝐸𝑛 , while the term with 𝛿(𝜔 − 𝐸𝑛 + 𝐸𝑚) has 𝑒−𝛽𝐸𝑚 . Thus we can say

𝑆(𝜔) = 𝑆(−𝜔)𝑒𝛽𝜔. (2.15)

INFO Note

There seems to be room for disagreement about how to define 𝑆(𝜔). Chaikin,
Lubensky, and Witten (1995) and Nozieres (2018) have it this way, Nazarov and
Danon (2013) have the energy axis inverted. It comes down to whether you want
to think about energy going to or from the system (see later).

At zero temperature 𝛽 → ∞ and we can see that 𝑆(𝜔 < 0) = 0.

Let’s evaluate Equation 2.14 for the oscillator. The matrix elements are

⟨𝑛|𝑦|𝑚⟩ = 1
√2𝑚𝜔0

{
√

𝑚 + 1 if 𝑛 = 𝑚 + 1
√

𝑚 if 𝑛 = 𝑚 − 1.

Giving

𝑆(𝜔) = 𝜋
𝑚𝜔0

∑
𝑛

𝑒−𝛽𝐸𝑛

𝑍
[𝑛𝛿(𝜔 + 𝜔0) + (𝑛 + 1)𝛿(𝜔 − 𝜔0)]

= 𝜋
𝑚𝜔0

[𝑛B(𝜔0)𝛿(𝜔 + 𝜔0) + (𝑛B(𝜔0) + 1)𝛿(𝜔 − 𝜔0)]

where

𝑛B(𝜔) ≡ 1
exp (𝛽𝜔) − 1

,

is the Bose distribution function. Equation 2.16 shows the predicted asymmetry between
positive and negative frequencies. We can check that

∫ 𝑆(𝜔)𝑑𝜔
2𝜋

= ⟨⟨𝑦2⟩⟩ = coth(𝛽𝜔0/2)
2𝑚𝜔0

,

as we found before.
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2.5 Quantum Fluctuations

Our discussion of the single oscillator can be generalized to a system of coupled oscil-
lators, of which our damped spring is an example. Although we won’t carry out the
transformation explicitly, we could express the 𝑦(𝑡) in terms of a system of normal modes
as

𝑦(𝑡) = ∑
𝑘

[𝑐𝑘𝑎†
𝑘(𝑡) + 𝑐∗

𝑘𝑎𝑘(𝑡)] , (2.16)

where the time evolution of the mode operators is

𝑎†
𝑘(𝑡) = 𝑒𝑖𝜔𝑘𝑡𝑎†

𝑘, 𝑎𝑘(𝑡) = 𝑒−𝑖𝜔𝑘𝑡𝑎𝑘.

Repeating the calculation of 𝑆(𝜔) gives

𝑆(𝜔) = 2𝜋 ∑
𝑘

|𝑐𝑘|2 [𝑛B(𝜔𝑘)𝛿(𝜔 + 𝜔𝑘) + (𝑛B(𝜔𝑘) + 1)𝛿(𝜔 − 𝜔𝑘)] . (2.17)

With a continuum of modes, as in the oscillator coupled to a string, 𝑆(𝜔) can have a
smooth (not just 𝛿-function like) behaviour. Nevertheless, the basic relation Equation 2.15
is still obeyed.

Now, we’ll show that 𝑆(𝜔) is related to the response of our quantum system, just as in
the classical case. For a system of oscillators, finding the response is actually no harder,
as the Heisenberg equations of motion in the presence of a driving force are exactly the
same as in the classical case. Thus the response is the same. In terms of the normal
modes the Hamiltonian looks like

𝐻 = ∑
𝑘

𝜔𝑘𝑎†
𝑘𝑎𝑘 − 𝑓(𝑡)𝑦,

where 𝑦 is written in terms of the normal modes as in Equation 2.16. The equation of
motion for the modes is

𝑑𝑎𝑘
𝑑𝑡

= −𝑖𝜔𝑘𝑎𝑘 + 𝑖𝑐𝑘𝑓(𝑡),

so that the response of the oscillator is 𝑎𝑘(𝑡) = 𝑒−𝑖𝜔𝑘𝑡𝑎𝑘(0) + 𝑎𝑘,𝑓(𝑡) with the driven
response 𝑎𝑘,𝑓(𝑡) being a number (not an operator) with Fourier components

𝑎𝑘,𝑓(𝜔) ≡ 𝑐𝑘
𝜔𝑘 − 𝜔 − 𝑖0

𝑓(𝜔).

Note the imaginary infinitesimal in the denominator. This is a notational device to
remind us that, even though the normal mode has no damping, a causal (retarded)
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2 Response of a Damped Oscillator

response is analytic in the upper half plane of 𝜔. The response of 𝑦(𝜔) is then obtained
from Equation 2.16

𝑦(𝜔) = ∑
𝑘

|𝑐𝑘|2 [ 1
𝜔𝑘 − 𝜔 − 𝑖0

+ 1
𝜔𝑘 + 𝜔 + 𝑖0

] 𝑓(𝜔).

Thus we have

𝜒(𝜔) = ∑
𝑘

|𝑐𝑘|2 [ 1
𝜔𝑘 − 𝜔 − 𝑖0

+ 1
𝜔𝑘 + 𝜔 + 𝑖0

] , (2.18)

but we also know the LHS from the classical calculation Equation 2.3.

Equation 2.17 and Equation 2.18 are rather similar. We can get an explicit relation by
using the formula

Im 1
𝑥 ∓ 𝑖0

= ±𝜋𝛿(𝑥),

which you can prove by allowing the infinitesimal to be finite, and then letting it go to
zero. We can then show

𝜒″(𝜔) = 𝜋 ∑
𝑘

|𝑐𝑘|2𝛿(𝜔𝑘 − 𝜔), 𝜔 > 0,

with 𝜒″(−𝜔) = −𝜒″(𝜔). Comparing with the classical answer Equation 2.3 allows us to
to find the |𝑐𝑘| without having to go through the trouble of finding the normal modes
explicitly (although we’d be using our knowledge of their density of states).

𝑆(𝜔) and 𝜒″(𝜔) are then related by

𝑆(𝜔) = 2𝜒″(𝜔) [𝑛B(𝜔) + 1] . (2.19)

This is a quantum fluctuation dissipation relation.

LIGHTBULB Check

Check that Equation 2.19 reduces to Equation 2.12 in the classical limit. It may
help to (just this once) put ℏ back in and then let it go to zero.
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2.6 Golden Rule and Dissipation

2.6 Golden Rule and Dissipation

We argued for the classical damped oscillator – actually our discussion is true more
generally – that Im 𝜒(𝜔) is related to the dissipation of energy. Now we have found
a relation between this quantity and our quantum noise spectrum 𝑆(𝜔). Can we see
directly how 𝑆(𝜔) is connected to energy dissipation?

The key is to regard the driving force as a perturbation that can cause transition between
energy eigenstates. The perturbation is

$ H_pert = - f(t)y, $

with 𝑓(𝑡) = 𝑓0 cos 𝜔𝑡. In lowest order perturbation theory, the system can make a
transition either up or down in energy by 𝜔 The transition rates can be found from
Fermi’s golden rule

Γ𝑛→𝑚 = 2𝜋 (𝑓0
2

)
2

|⟨𝑛|𝑦|𝑚⟩|2𝛿(±𝜔 + 𝐸𝑚 − 𝐸𝑛).

The total rate of transitions changing the energy of the system by 𝜔 can then be found by
summing the rates, accounting for the probability 𝑒−𝛽𝐸𝑛/𝑍 of finding the system initially
in eigenstate 𝑛

Γ(𝜔) = 𝑆(𝜔) (𝑓0
2

)
2

.

Thus 𝑆(𝜔) measures the rate at which transitions absorbing energy 𝜔 are occurring,
and 𝑆(−𝜔) the corrsponding rate for emitting energy 𝜔. The asymmetry of 𝑆(𝜔) is
then interpreted as an inequality between emission and absorption of radiation, which
is of course most extreme in the ground state. This is – eventually – a clear physical
interpretation of the quantum noise spectrum 𝑆(𝜔).

The rate of energy absorption is

𝜔Γ(𝜔) = 𝜔𝑆(𝜔) (𝑓0
2

)
2

= 1
2

𝜔𝜒″(𝜔) [𝑛B(𝜔) + 1] 𝑓2
0 .

Let’s compare with our previous expression for the energy dissipated, Equation 2.6. We
see we have agreement for 𝑛B(𝜔) → 0. This corresponds to the energy of the transition
being much larger than the thermal energy ℏ𝜔 ≫ 𝑘𝐵𝑇.
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3 Linear Response: Formal Theory

Our long discussion of the oscillator has laid the ground for some general definitions.
Firstly, how do we talk about linear response in a general (quantum) system?

3.1 Kubo Formula

Suppose we want to determine how the expectation value of some observable 𝐴 depends
on some quantity 𝜆𝑡, which appears (for small variations) linearly in the Hamiltonian

𝐻𝑡 = 𝐻0 − 𝜆𝑡𝐵.

Recalling the oscillator, we call 𝐵 = −𝜕𝐻
𝜕𝜆 the generalized force, and 𝜆 the generalized

displacement. I’m writing the time dependence like this to distinguish it from the
Heisenberg picture time evolution. We assume that 𝐴 has expectation value zero when
𝜆 = 0: we can just define it that way if necessary.

Viewing the time evolution of the state of the system |Ψ(𝑡)⟩ in the interaction picture
|Ψ𝐼(𝑡)⟩ ≡ 𝑒𝑖𝐻0𝑡|Ψ(𝑡)⟩ gives

𝑖𝜕|Ψ𝐼(𝑡)⟩
𝜕𝑡

= −𝜆𝑡𝐵𝐼(𝑡)|Ψ𝐼(𝑡)⟩,

where 𝐵𝐼(𝑡) = 𝑒𝑖𝐻0𝑡𝐵𝑒−𝑖𝐻0𝑡. The result of first order time dependent perturbation theory
is the state |Ψ𝐼(𝑡)⟩ = |Ψ(0)⟩ + |Ψ(1)

𝐼 (𝑡)⟩ + ⋯, with

|Ψ(1)
𝐼 (𝑡)⟩ = 𝑖 ∫

𝑡

0
𝑑𝑡′𝜆𝑡′𝐵𝐼(𝑡′)|Ψ(0)⟩.

The expectation value of 𝐴 is then

⟨Ψ(𝑡)|𝐴|Ψ(𝑡)⟩ = ⟨Ψ𝐼(𝑡)|𝐴𝐼(𝑡)|Ψ𝐼(𝑡)⟩

= ⟨Ψ(0)|𝐴𝐼(𝑡)|Ψ(0)⟩ + 𝑖 ∫
𝑡

0
𝑑𝑡′𝜆𝑡′⟨Ψ(0)| [𝐴𝐼(𝑡), 𝐵𝐼(𝑡′)] |Ψ(0)⟩.

17



3 Linear Response: Formal Theory

Mixed states can be treated by averaging over a distribution of quantum states – or one
can look at the equation of motion of the density matrix directly. The result allows us to
identify the response function 𝜒𝐴𝐵(𝑡) of 𝐴 due to a perturbation that couples to 𝐵 as

𝜒𝐴𝐵(𝑡) = 𝑖⟨⟨[𝐴𝐼(𝑡), 𝐵𝐼(0)]⟩⟩, 𝑡 > 0. (3.1)

Normally we write 𝐴(𝑡) rather than 𝐴𝐼(𝑡), as this is the Heisenberg picture for the
unperturbed problem. Equation 3.1 is known as the Kubo formula. It expresses the
response of a system in terms of the dynamics of the unperturbed system.

3.2 Fluctuation Dissipation Theorem

The Kubo formula makes it clear that there is a connection between response functions
and noise correlations. Let’s find the connection in its most general form. We start from
the correlation function

𝑆𝐴𝐵(𝑡) ≡ ⟨⟨𝐴𝐼(𝑡)𝐵𝐼(0)⟩⟩.

Recalling that
⟨⟨⋯⟩⟩ = 1

𝑍
tr [𝑒−𝛽𝐻 ⋯] ,

you should be able to show that

𝑆𝐴𝐵(𝑡) = 𝑆𝐵𝐴(−𝑡 − 𝑖𝛽).

LIGHTBULB Check

Show this using the cyclic property of the trace.

Fourier transforming, we arrive at

𝑆𝐴𝐵(𝜔) = 𝑒𝛽𝜔𝑆𝐵𝐴(−𝜔).

We’ve met an example of this relation before, see Equation 2.15.

𝜒𝐴𝐵(𝑡) can be written in terms of the correlations as

𝜒𝐴𝐵(𝑡) = {
𝑖 [𝑆𝐴𝐵(𝑡) − 𝑆𝐵𝐴(−𝑡)] 𝑡 > 0
0 𝑡 < 0.

18



3.2 Fluctuation Dissipation Theorem

We write this as 𝜒𝐴𝐵(𝑡) = 𝑖𝜃(𝑡) [𝑆𝐴𝐵(𝑡) − 𝑆𝐵𝐴(−𝑡)], where 𝜃(𝑡) is the step function

𝜃(𝑡) = {
1 𝑡 ≥ 0
0 𝑡 < 0

.

𝜒𝐴𝐵(𝜔) can then be expressed as the convolution. The Fourier transform of the step
function is

̃𝜃(𝜔) = 𝑖
𝜔 + 𝑖0

,

giving

𝜒𝐴𝐵(𝜔) = − ∫ 𝑑𝜔′

2𝜋
𝑆𝐴𝐵(𝜔′) − 𝑆𝐵𝐴(−𝜔′)

𝜔 − 𝜔′ + 𝑖0

= − ∫ 𝑑𝜔′

2𝜋
𝑆𝐴𝐵(𝜔′) [1 − 𝑒−𝛽𝜔′]

𝜔 − 𝜔′ + 𝑖0
.

(3.2)

To make sense of this formula, use the Kramers–Kronig relation Equation 2.5 to write

𝜒𝐴𝐵(𝜔) = 𝜒′(𝜔) + 𝑖𝜒″(𝜔)

= 𝒫 ∫
∞

−∞

𝑑𝜔′

𝜋
𝜒″(𝜔′)
𝜔′ − 𝜔

+ 𝑖𝜒″(𝜔)

= ∫
∞

−∞

𝑑𝜔′

𝜋
𝜒″(𝜔′)

𝜔′ − 𝜔 − 𝑖0
,

(3.3)

where we have used the formula

1
𝑥 + 𝑖0

= 𝒫 1
𝑥

− 𝑖𝜋𝛿(𝑥).

Comparing Equation 3.2 and Equation 3.3 gives

𝑆𝐴𝐵(𝜔) = 2𝜒″
𝐴𝐵(𝜔) [𝑛B(𝜔) + 1] . (3.4)

This is the most general form of the quantum fluctuation dissipation relation, which we
met before in the case of the oscilator, see Equation 2.19.
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3 Linear Response: Formal Theory

3.3 Spectral Representation

The quantites 𝜒𝐴𝐵(𝜔) and 𝑆𝐴𝐵(𝜔) have spectral representations in terms of the energy
eigenstates and eigenvalues. For example,

𝑆𝐴𝐵(𝜔) = 2𝜋 ∑
𝑚,𝑛

𝑒−𝛽𝐸𝑚

𝑍
⟨𝑚|𝐴|𝑛⟩⟨𝑛|𝐵|𝑚⟩𝛿(𝜔 − 𝐸𝑛 + 𝐸𝑚).

LIGHTBULB Check

Use the spectral representation to prove the fluctuation dissipation relation Equa-
tion 3.4.

The function 𝑆𝐴𝐴(𝜔) can be interpreted in terms of the Fermi golden rule, as we saw in
the case of the oscillator. Notice that 𝑆𝐴𝐴(𝜔) > 0.
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4 Response of Matter

Let’s now consider a response function typical of a many body system

4.1 Density Response

Suppose a system is subject to a time dependent potential – due to an electric field for
example – corresponding to a term in the Hamiltonian

𝐻pert =
𝑁

∑
𝑗=1

𝑉 (r𝑖, 𝑡) = ∫ 𝑉 (r, 𝑡)𝜌(r) 𝑑r = 1
𝐿3 ∑

q
𝑉q(𝑡)𝜌−q.

This perturbation couples to the density, and we ask how the density is affected by it. In
a translationally invariant system

⟨⟨𝜌q(𝑡)⟩⟩ = − 1
𝐿3 ∫

𝑡

−∞
𝜒𝜌

q(𝑡 − 𝑡′)𝑉q(𝑡) 𝑑𝑡′,

where the density response function 𝜒𝜌
q(𝑡) is

𝜒𝜌(q, 𝑡) = 𝑖⟨⟨[𝜌q(𝑡), 𝜌−q(0)]⟩⟩.

LIGHTBULB Check

What is the role of translational invariance?

The general theory described above applies here with 𝐴 = 𝜌q and 𝐵 = 𝜌−q. Focusing
on the case of zero temperature, we have the spectral representation of the correlation
function

𝑆𝜌(q, 𝜔) = 2𝜋 ∑
𝑛

|⟨0|𝜌q|𝑛⟩|2𝛿(𝜔 − 𝐸𝑛 + 𝐸0), (4.1)

where we have used 𝜌†
q = 𝜌−q. This quantity is called the dynamical structure factor,

on account of its importance in scattering experiments. It gives the rate at which the
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4 Response of Matter

system makes transitions that impart energy 𝜔 and momentum q in the presence of the
perturbation 𝐻pert.

The integral

𝑆𝜌(q) = ∫ 𝑆𝜌(q, 𝜔)𝑑𝜔
2𝜋

= ⟨⟨𝜌q𝜌−q⟩⟩

is usually called the static structure factor, which is a bit of a strange name given
that it contains all frequencies. A better name would perhaps be equal time structure
factor. 𝑆𝜌(q) quantifies the density fluctuations in a system. It is related to the quantity
𝜌2(r1, r2) considered in Lecture 1 since

𝜌2(r1, r2) = ⟨Ψ|𝜌(r1)𝜌(r2)|Ψ⟩ − 𝜌1(r1)𝛿(r1 − r2).

INFO Note

Some texts (e.g Nozieres (2018)) omit the 2𝜋 in the definition Equation 4.1. I prefer
to keep it so that 𝑆𝜌(q, 𝑡) = ⟨⟨𝜌q(𝑡)𝜌−q(0)⟩⟩.

4.2 Sum rules

𝑆𝜌(q, 𝜔) obeys certain relations irrespective of the particular model under consideration.
Since these usually involve integrals over the whole range of energy, they are known
as sum rules. By constraining the form of 𝑆𝜌(q, 𝜔), sum rules may be used to prove
general statements or check the validity of approximations.

We start with the f-sum rule. This follows from considering the double commutator
[[𝐻, 𝜌q], 𝜌−q]. In a system where the interaction depends only on density, the interaction
commutes with 𝜌q, so the commutator is determined by the kinetic energy

𝑇 = − 1
2𝑚

𝑁
∑
𝑗=1

∇2
𝑖 .

(We could also consider lattice models, with their own kinetic energy, but we’ll stick with
the simplest version). Taking 𝜌q = ∑𝑁

𝑗=1 𝑒−𝑖q⋅r𝑗 , we find

[[𝐻, 𝜌q], 𝜌−q] = −𝑁q2

𝑚
.

The left hand side can be written in terms of 𝑆𝜌(q, 𝜔), giving the f-sum rule
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4.2 Sum rules

∫
∞

−∞
𝜔𝑆(q, 𝜔)𝑑𝜔

2𝜋
= 𝑁q2

2𝑚
.

Next we discuss the compressibility sum rule. The compressibility is defined in terms
of the volume 𝑉 and pressure 𝑝 as

𝛽 = − 1
𝑉

𝜕𝑉
𝜕𝑝

.

At zero temperature, the pressure is

𝑝 = −𝜕𝐸0
𝜕𝑉

,

where 𝐸0 is the ground state energy. Since energy is an extensive quentity we expect
𝐸0 = 𝑉 𝜖(𝜌), where 𝜌 = 𝑁/𝑉 is the density, and 𝜖(𝜌) the energy per unit volume. Then

𝛽−1 = 𝜌2𝜖″(𝜌).

• In the presence of a potential 𝑉 (r), energy density is

𝜖(𝜌0 + 𝛿𝜌) = 1
2𝛽𝜌2

0
[𝛿𝜌]2 + 𝑉 (r)𝛿𝜌

• Minimizing with respect to 𝛿𝜌 gives

𝜖(𝑉 (r)) = −𝛽𝜌2
0

2
[𝑉 (r)]2

• Compare with perturbation theory

Recall that the chemical potential 𝜇 = 𝜕𝐸0
𝜕𝑁 = 𝜖′(𝜌). Then

𝛽 = 𝜌−2 𝜕𝜌
𝜕𝜇

= 1
𝜌𝑁

𝜒′(0, 0).

Now 𝜒′(q, 𝜔) can be written in terms of 𝜒″(q, 𝜔) (Kramers–Kronig) and 𝜒″(q, 𝜔) is
related to 𝑆𝜌(q, 𝜔). This gives the compressibility sum rule at zero temperature

lim
q→0

∫
∞

0

𝑆(q, 𝜔)
𝜔

𝑑𝜔
2𝜋

= 𝑁𝜌𝜅
2

.

23



4 Response of Matter

LIGHTBULB Check

Why do we need limq→0?

The compressibility sum rule is often written in terms of the speed of sound 𝑐 = (𝜅𝑚𝜌)−1/2

as

lim
q→0

∫
∞

0

𝑆(q, 𝜔)
𝜔

𝑑𝜔
2𝜋

= 𝑁
2𝑚𝑐2 .

Let’s consider a simple example. Some systems, notably Bose gases, have a zero temper-
ature dynamical structure factor that at low momentum has the following approximate
form

𝑆𝜌(q, 𝜔) ∼ 2𝜋𝑆𝜌(q)𝛿(𝜔 − 𝜔(q)), (4.2)

where 𝜔(q) is the dispersion relation of the collective excitations. In reality, the 𝛿-function
is never infinitely sharp, but has a finite width on account of interactions between
excitations causing scattering and / or decay. In the approximation Equation 4.2, often
known as the single mode approximation, the f-sum rule tells us that

𝑆𝜌(q) = 𝑁q2

2𝑚𝜔(q)
.

Let’s consider two important cases. First, suppose 𝜔(q) = q2

2𝑚 . This would be the case in
a Bose condensate with strictly no interactions, so that excitations out of the condensate
are free particles. Then

𝑆𝜌(q) = 𝑁.

This result corresponds to completely uncorrelated particle positions (Poisson statistics).

Second, suppose 𝜔(q) = 𝑐|q| i.e. linear dispersion with finite speed of sound. Then

𝑆𝜌(q) = 𝑁|q|
2𝑚𝑐

.

In this case the density fluctuations vanish as the wavevector goes to zero, indicating
long-range correlations between positions in the ground state.

LIGHTBULB Check

Check the compressibility sum rule in these two cases.
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4.2 Sum rules
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