Response and Correlation






Calculating eigenstates and eigenenergies is one thing, but what do experimentalists
actually measure?







1 Probing Many Body systems

Our first encounters with quantum mechanics involve finding the energies of stationary
states, whether of the Hydrogen atom or a box of radiation in thermal equilibrium.
Finding the energy of metallic Sodium (to pick a simple metal) is important if you want
to be able calculate the melting temperature, but most experiments probe properties of
a state of matter that are not simply contained in thermodynamic functions of state. For
example, seeing that a metal is reflective involves shining light and measuring how it is
scattered.

When a theorist looks at an experimentalist, what they see is a machine for measuring
response functions, which encode the response of a system to external perturbations.
The theorist’s job is to understand what kinds of response are possible (e.g. metallic,
insulating, superconducting), and hopefully to actually calculate response functions
for a particular model. Often this is what really characterizes a state of matter: the
thermodynamic differences between a metal and a superconductor are far less significant
that the differing electromagnetic response.

In this lecture we will see how response functions are encoded in the eigenvalues and
eigenstates of a many body system, and their general features. In fact, you’ve probably
already met response functions in another guise: as Green’s functions.






2 Response of a Damped Oscillator

On the grounds that it’s always best to start with a single degree of freedom first, we
introduce the idea of response functions for (sigh) the harmonic oscillator.

2.1 Green’s Function for the Damped Oscillator

Consider your old friend, the damped driven oscillator

my + mwiy + vy = f(t). (2.1)

Solving this problem, as you’ve doubtless done many times, involves finding y(¢) given
f(t). Without going any further, what can we say about such a solution? Equation 2.1 is
linear, which means that y(¢) depends linearly on f(t). By the principle of superposition
we can immediately write

y(t) = /x(t,s)f(s) ds.

X(t, s) is our first example of a response function, Green’s function, or susceptibility.
On general grounds, we can say two more things about x(¢,s). First, that it is causal,
meaning that, since effect follows cause:

x(t,s) =0, fort<s.

Second, since the LHS of Equation 2.1 has no explicit time dependence, x is really
a function only of ¢t —s. We can certainly imagine situations where this is not true.
Causality, however, seems pretty watertight (even if we don’t understand why).

We can interpret x(t) as the solution of Equation 2.1 to a d-function force at ¢ = 0.

myx + mwix +yx = 0(t). (2.2)

There are at least two ways to go about finding x(¢) in this case. The first is most
direct: recall that the free motion of the oscillator can be written in terms of the complex

exponential e”*! where w satisfies



2 Response of a Damped Oscillator

mw? 4 iyw — mwg = 0,

so that

/ 2
7 .Y .Y
We=E wg_4m2 Tl T E T gy

Since x(t) = 0 for ¢ < 0, we can get a J-function in Equation 2.2 by choosing a
superposition of e~*+! such that x’(0+) = m™!

X(t)Z{O t=9

m%ul sin(w,t)e /2™t ¢ > 0.

The second method is to solve the equation Equation 2.2 in the Fourier domain, where it
becomes

so that

X(w) = (=) i (2.3)

I’'m going to assume that you’ve plotted the amplitude and phase of this function enough
times in your life already. Fourier transforming back to the time domain

w0 =[x gt [ R (2.4)

21 m w—w )(w—w_) 21’

The integrand has two poles in the lower half plane at w, , on account of v being positive,
which in turn follows from (or defines?) the direction of time. The fact that the frequency
response is analytic in the upper half plane is equivalent to causality in the real time
response. This is because for t < 0 we can close the contour in Equation 2.4 in the upper
half plane, avoiding the poles and getting zero by Cauchy’s theorem. For ¢ > 0 we close
in the lower half plane (not forgetting the - from going the other way) and use the residue
theorem to give

efzo.gt efzw,t )

] 1
x(t) = s ( + = sin(w,t)e” /2™ ¢ >0,
m\w, —w_  Ww_—w,

mw,

as before.



2.2 Properties of the Susceptibility

2.2 Properties of the Susceptibility

(’'m going to drop the tilde from X (w), as there’s no real chance of confusion.)

We've already argued that causality dictates that y(w) be analytic in the upper half
plane. What is the implication for the response measured at real frequencies? Let’s split
X(w) into its real and imaginary parts

X(w) = x'(w) +ix" (w).

Then analyticity in the UHP implies the Kramers—Kronig relation

X (w) = y/oo A X" (W) (2.5)

/ )
T W —Ww
—00
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where ? denotes the principal part. Since x(t) is real, we have x(—w)* = x(w), so that
X' (w) is an even function, while x”(w) is odd.

@ Check

Check that Equation 2.3 satisfies Equation 2.5.

The real and imaginary parts encode different aspects of the response. The imaginary
part is related to the power dissipated by a driving force. For f = f,, coswt we have

Wi = (F(05(0)) = 50X (@) f3. (26)

For stability we must have wy”(w) > 0 (and even).

The real part is related to the shift in the energy of the system in the presence of a
driving force. Recalling that the applied force appears in the Hamiltonian as — f(¢)y(¢),
we find the time average

Epire = ~(F0y(0)) = —5x' )3

For the damped oscillator, the sign of x’(w) changes at resonance. The drive lowers the
energy beneath the resonance, and raises it above.
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2.3 Mechanical Model of Dissipation

When we move on to the quantum oscillator, we’re going to run into the problem that
we only know how to describe Hamiltonian time evolution in quantum mechanics, that
is, without dissipation. It’s possible to describe the damped oscillator in Hamiltonian
terms at the expense of explicitly introducing the degrees of freedom that are doing the
dissipating. You’ve met this in the realm of classical mechanics when you discuss the
mechanical impedance of an elastic string.

Attaching an undamped oscillator to a string under tension 7 gives the coupled system

il Ou(x,t)
= T
Yy 0Y oz
x=0
o%u 1 9%u
Pu_ L0 o w30 u.0) =)

The model was orinally studied by Horace Lamb in a 1900 paper titled “On a Peculiarity
of the Wave-System due to the Free Vibrations of a Nucleus in an Extended Medium”.
Lamb wasn’t talking about the nucleus of the atom — that hadn’t yet been discovered —
but of any body coupled to a continuum.

If nothing is propagating towards the oscillator from the string, only away from it, we
can write

u(z,t) =yt —x/c). (2.7)

This gives %” 0= —1/c, and hence a closed equation for y
r=

§+wiy 4y =0.

with v = 7/c. Note that this is the impedance of the string.

The nice thing about this model is that it is very explicit. In particular, we can see
exactly where the arrow of time comes from: the assumption Equation 2.7. Had we
somehow arranged to have an incoming wave that matched the motion of the oscillator,
we would arrive at an equation of motion for the oscillator with damping of the other
sign.

Although we’ve introduced response functions for a linear system, this isn’t a requirement
(fortunately). More generally, we can ask how the (nonlinear) motion of a system is
modified at first order in some perturbation — a force in the case of the oscillator. The
susceptibility describes the linear response of the system. Many quantities that we meet
in elementary physics such as elastic constants and conductance (electrical and thermal)
are really linear response functions that represent a convenient first approximation to
the true nonlinear behaviour.


https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-32.1.208
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-32.1.208

2.4 Finite Temperature Fluctuations

2.4 Finite Temperature Fluctuations

Equation 2.7 corresponds to a ‘zero temperature’ environment. Finite temperature
corresponds to an ‘incoming’ wave describing the thermal occupation of the Fourier
modes of the string, which would cause Brownian motion of the oscillator. The energy
scale of this motion is k7.

We can easily extend the earlier discussion to finite temperature by writing u(x,t) in
terms of components approaching and leaving the oscillator

w(®, ) = iy (t+ x/¢) + Uy (t — z/c).

The force on the oscillator is proportional to

ou(x,t)

oD = e (1) = (1) = e R (6) — (1)

=0

The equation of motion can then be written as

my + mwgy + ’Yy = fnoise(t)7 (28)

where [0 (t) = 20, () is a random force due to thermal fluctuations. As this derivation
makes clear, the noise and the damping have a common origin.

On account of the infinite bandwidth of the string, f, .. is white noise

oise

E [ fuoise (£) Fnoise (t)] = 27kpTo(t — 1) (2.9)

A differential equation driven by noise like Equation 2.8 is known as a Langevin equation
in physics and as a stochastic differential equation (SDE) in mathematics.

1 Note

Actually, no self-respecting mathematician would write something like Equation 2.8,
implying as it does that the instantaneous acceleration of the oscillator is infinite.
Physicists, on the other hand, know that this is just an approximation caused by
setting certain time scales to zero.

The mathematical way to write an equation like Equation 2.8 is as the pair of first order
SDEs
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dy = L at
m

dp = —m [wiy + vp| dt + \/2vkgTdW,

where W is a Wiener process. Writing the equation in terms of differentials avoids the
awkward subject of infinite forces.

The motion of the oscillator in response to the thermal noise can be calculated using the
response function. In the frequency domain, Equation 2.9 is

~ ~

E [fnoise (w)fnoise (w/ﬂ = 47["}/]{2BT5(0J + w/)?

giving a power spectrum of oscillator fluctuations

E[f(w)§(w)] = 4mykpT|x(w)[0(w + o). (2.10)
Noting that
" _ w _ 2

we can write Equation 2.10 as

E [(w)i(w)] = 27S(w)d(w + '), (2.11)
where
S(w) = Q%TX”@). (2.12)

Note that S(w) = S(—w) on account of x”(w) being odd. This result tells us that the
fluctuations and response of our oscillator are related to each other. This is actually
rather natural — the fluctuations are a response to the thermal noise felt by the system.
Since it is x”(w) — the dissipative part of the response — that appears in Equation 2.12,
relations of this sort are called fluctuation—dissipation relations. We’ll meet the
quantum version next.

10



2.5 Quantum Fluctuations
2.5 Quantum Fluctuations

Quantum mechanics provides another source of fluctuations. For a single (undamped)
oscillator

2
P 1
H = % + §mw8y2,
we have the ground state fluctuations
1
0[y?]0) = )
O10) = 5

while at finite temperature

2] _ coth(Bwy/2)
B 2mwy

((y*)) =tr[py

where p = e # /7 is the equilibrium density matrix, and Z = tr[e ] is the partition

function. The double angular brackets (((---))) denote that we are taking quantum and
thermal expectations.

Now what about time dependent fluctuations? This is what was calculated in Equation 2.11
for the classical damped oscillator. A natural candidate is

{{y()y(0))),

where y(t) denotes the Heisenberg picture time evolution y(t) = e'tye *H!, This gives

for the quantum noise spectrum

s = [ (oo (2.13)

—00

So far, this is a purely formal definition — we have to figure out what it means. The first
and most important thing to notice is that, since y(0) and y(¢) do not commute with

each other ((y(t)y(0))) # ((y(0)y(t))) = ({y(—1)y(0))). Hence

S(w) # S(—w).
Many of the properties of this function are most easily understood from a spectral

representation, which is obtained by inserting a complete set of energy eigenstates
between y(0) and y(t) in Equation 2.13. This gives

11



2 Response of a Damped Oscillator

o BE,
S(w)=2m) 7 nlylm)Po(w — E,, + E,,). (2.14)

m,n

This expression is completely general, but already it is possible to see what is going on.
The reason for the asymmetry in S(w) is that the term with 6(w— E,,, + E,,) is weighted
by e #Fn while the term with §(w — E,, + E,,) has e #Fm. Thus we can say

S(w) = S(—w)e. (2.15)

1 Note

There seems to be room for disagreement about how to define S(w). Chaikin,
Lubensky, and Witten (1995) and Nozieres (2018) have it this way, Nazarov and
Danon (2013) have the energy axis inverted. It comes down to whether you want
to think about energy going to or from the system (see later).

At zero temperature 5 — oo and we can see that S(w < 0) = 0.

Let’s evaluate Equation 2.14 for the oscillator. The matrix elements are

(nlylm) 1 m+1 ifn=m+1
nlylm) = ——
Y V2mw, | vVm ifn=m-—1.

Giving
S0 = e 37 S e+ ) + (14 1 =)
= e 110 (0)8 ) + () + DB — p)]

where

N
exp (fw) — 17

np(w)

is the Bose distribution function. Equation 2.16 shows the predicted asymmetry between
positive and negative frequencies. We can check that

/smﬂw=«¢»:““”“””

2 2muwy

as we found before.

12



2.5 Quantum Fluctuations

Our discussion of the single oscillator can be generalized to a system of coupled oscil-
lators, of which our damped spring is an example. Although we won’t carry out the
transformation explicitly, we could express the y(¢) in terms of a system of normal modes
as

y(t) = [epal(t) + cra, ()] | (2.16)

k

where the time evolution of the mode operators is

a,z(t) = ei”ktaz, a,(t) = e “rta, .

Repeating the calculation of S(w) gives
S(w) = 2”2 |ex]? [ns (wi)d (w + wy,) + (ng(wg) + 1)d(w — wy)] - (2.17)
P

With a continuum of modes, as in the oscillator coupled to a string, S(w) can have a
smooth (not just é-function like) behaviour. Nevertheless, the basic relation Equation 2.15
is still obeyed.

Now, we’ll show that S(w) is related to the response of our quantum system, just as in
the classical case. For a system of oscillators, finding the response is actually no harder,
as the Heisenberg equations of motion in the presence of a driving force are exactly the
same as in the classical case. Thus the response is the same. In terms of the normal
modes the Hamiltonian looks like

H= Zwka};ak — f(t)y,
%

where y is written in terms of the normal modes as in Equation 2.16. The equation of
motion for the modes is

da, , ,
= Wk +ic, f(t),
so that the response of the oscillator is a,(t) = e **'a, (0) + ay, ((t) with the driven
response a,, ;(t) being a number (not an operator) with Fourier components

Cg

fw).

ak’f(w> = wy, —w — 10

Note the imaginary infinitesimal in the denominator. This is a notational device to
remind us that, even though the normal mode has no damping, a causal (retarded)

13



2 Response of a Damped Oscillator

response is analytic in the upper half plane of w. The response of y(w) is then obtained
from Equation 2.16

1 1
y(w) = ;'c’f [wk—w—iO * wk—i-w—i-iO] f(@).

Thus we have

1 1
= E 2 2.1
X(@) - x| [wk—w—io—i_wk—l—w—l-i()}’ (2.18)

but we also know the LHS from the classical calculation Equation 2.3.

Equation 2.17 and Equation 2.18 are rather similar. We can get an explicit relation by
using the formula

which you can prove by allowing the infinitesimal to be finite, and then letting it go to
zero. We can then show

X'(W) =7y | dlw, —w), w>0,
k

with x”(—w) = —x”(w). Comparing with the classical answer Equation 2.3 allows us to
to find the |¢;| without having to go through the trouble of finding the normal modes
explicitly (although we’d be using our knowledge of their density of states).

S(w) and x”(w) are then related by

S(w) =2x"(w) [ng(w) +1]. (2.19)

This is a quantum fluctuation dissipation relation.

@ Check

Check that Equation 2.19 reduces to Equation 2.12 in the classical limit. It may
help to (just this once) put A back in and then let it go to zero.

14



2.6 Golden Rule and Dissipation
2.6 Golden Rule and Dissipation

We argued for the classical damped oscillator — actually our discussion is true more
generally — that Im y(w) is related to the dissipation of energy. Now we have found
a relation between this quantity and our quantum noise spectrum S(w). Can we see
directly how S(w) is connected to energy dissipation?

The key is to regard the driving force as a perturbation that can cause transition between
energy eigenstates. The perturbation is

$ H pert =-f(t)y, $

with f(t) = fycoswt. In lowest order perturbation theory, the system can make a
transition either up or down in energy by w The transition rates can be found from
Fermi’s golden rule

2
oo =27 (22) il PO + B, — ).

The total rate of transitions changing the energy of the system by w can then be found by

summing the rates, accounting for the probability e #¥» /Z of finding the system initially

in eigenstate n

P(w) = S() (2{’)2

Thus S(w) measures the rate at which transitions absorbing energy w are occurring,
and S(—w) the corrsponding rate for emitting energy w. The asymmetry of S(w) is
then interpreted as an inequality between emission and absorption of radiation, which
is of course most extreme in the ground state. This is — eventually — a clear physical
interpretation of the quantum noise spectrum S(w).

The rate of energy absorption is
_ f() 2 _ 1 ” 2
wl'(w) = wS(w) 5 ) = gwx (w) [ng(w) + 1] f5.

Let’s compare with our previous expression for the energy dissipated, Equation 2.6. We
see we have agreement for ng(w) — 0. This corresponds to the energy of the transition
being much larger than the thermal energy fiw > kgT.

15






3 Linear Response: Formal Theory

Our long discussion of the oscillator has laid the ground for some general definitions.
Firstly, how do we talk about linear response in a general (quantum) system?

3.1 Kubo Formula

Suppose we want to determine how the expectation value of some observable A depends
on some quantity \,, which appears (for small variations) linearly in the Hamiltonian

H, = Hy— \,B.

Recalling the oscillator, we call B = —%—i‘r the generalized force, and A the generalized
displacement. I'm writing the time dependence like this to distinguish it from the
Heisenberg picture time evolution. We assume that A has expectation value zero when
A = 0: we can just define it that way if necessary.

Viewing the time evolution of the state of the system |¥(¢)) in the interaction picture
[W,(£)) = eHHot [ W(2)) gives

ﬁﬂﬁ”:—&&@@ﬁ»

where B;(t) = e'Hot Be~iHot The result of first order time dependent perturbation theory

is the state |¥,(¢)) = [¥(0)) + ]\Ilgl)(t» + -+, with

|%Wm=3/wuﬂmwwm»

The expectation value of A is then

(WA () = (W (O] AD)P (1)

= (W (0)[A(2)|¥(0)) +i/ dt’ Ay (U(0)] [Af(2), By(t")] [€(0)).
0

17



3 Linear Response: Formal Theory

Mixed states can be treated by averaging over a distribution of quantum states — or one
can look at the equation of motion of the density matrix directly. The result allows us to
identify the response function x 45(t) of A due to a perturbation that couples to B as

Xap(t) = i{{[A(t), B{O)])), ¢>0. (3.1)

Normally we write A(t) rather than A;(¢), as this is the Heisenberg picture for the
unperturbed problem. Equation 3.1 is known as the Kubo formula. It expresses the
response of a system in terms of the dynamics of the unperturbed system.

3.2 Fluctuation Dissipation Theorem

The Kubo formula makes it clear that there is a connection between response functions
and noise correlations. Let’s find the connection in its most general form. We start from
the correlation function

Sap(t) = ((Af(t)B;(0))).

Recalling that

you should be able to show that

Sap(t) = Spa(—t—ip).

@ Check

Show this using the cyclic property of the trace.

Fourier transforming, we arrive at

Saplw) = eﬁwSBA(_W>'

We’ve met an example of this relation before, see Equation 2.15.
X ap(t) can be written in terms of the correlations as
AB 0 t<0.

18



3.2 Fluctuation Dissipation Theorem

We write this as x 45(t) = i0(t) [Sy5(t) — Sga(—t)], where 6(¢) is the step function

1 ¢t>0
H(t):{ =7
0 t<O0

X ap(w) can then be expressed as the convolution. The Fourier transform of the step
function is

D
—

€
~—

RREERTX

giving

_ dw’ Syp(w') — Spa(—w’)
Xap(w) = / 2 w—w +i0

_ _/CZW/SAB<W/> [1—e ]

2 w—w +10

(3.2)

To make sense of this formula, use the Kramers—Kronig relation Equation 2.5 to write

Xap(Ww) = X'(w) +ix" (w)

dw’ x" (W) .,
_?/ T w—w+2x @) (3.3)

_/ di X//(w/)
) T W —w—i0’

o0

where we have used the formula

1 1
0 fP; —imd(x).

Comparing Equation 3.2 and Equation 3.3 gives

Sap(w) = 2xp(w) [ng(w) +1]. (3.4)

This is the most general form of the quantum fluctuation dissipation relation, which we
met before in the case of the oscilator, see Equation 2.19.

19



3 Linear Response: Formal Theory
3.3 Spectral Representation

The quantites x 45(w) and S, z(w) have spectral representations in terms of the energy
eigenstates and eigenvalues. For example,

¢ BEnm
Saplw) =27 ——(mlAn){n|Blm)é(w — E,, + E,,).

@ Check

Use the spectral representation to prove the fluctuation dissipation relation Equa-
tion 3.4.

The function S, 4(w) can be interpreted in terms of the Fermi golden rule, as we saw in
the case of the oscillator. Notice that S, 4 (w) > 0.

20



4 Response of Matter

Let’s now consider a response function typical of a many body system

4.1 Density Response

Suppose a system is subject to a time dependent potential — due to an electric field for
example — corresponding to a term in the Hamiltonian

Vir, 1) = / Ve, )p(r) dr % SV, (00 g

q

N
Hpert =
j=1

This perturbation couples to the density, and we ask how the density is affected by it. In
a translationally invariant system

(nalth) = —75 | xh(e—e)Wg(0)ar,

where the density response function x4 (t) is

Xo(a,t) = i{{[pg (1), p_q(0)]))-

@ Check

What is the role of translational invariance?

The general theory described above applies here with A = p, and B = p_,. Focusing
on the case of zero temperature, we have the spectral representation of the correlation
function

S,(q,w) =21 |{0pg|n)[*6(w — B, + Ey), (4.1)

where we have used le = p_q- This quantity is called the dynamical structure factor,
on account of its importance in scattering experiments. It gives the rate at which the

21



4 Response of Matter

system makes transitions that impart energy w and momentum q in the presence of the

perturbation H.

The integral

S = [ 8@y = (lpap )

is usually called the static structure factor, which is a bit of a strange name given
that it contains all frequencies. A better name would perhaps be equal time structure
factor. S, (q) quantifies the density fluctuations in a system. It is related to the quantity
po(ry,1ry) considered in Lecture 1 since

Pa(ry,T5) = (¥lp(r)p(ry)|¥) — py(ry)d(r; —1y).

1 Note

Some texts (e.g Nozieres (2018)) omit the 27 in the definition Equation 4.1. T prefer
to keep it so that S,(q,t) = ((pq(t)p_q(0))).

4.2 Sum rules

S p(q, w) obeys certain relations irrespective of the particular model under consideration.
Since these usually involve integrals over the whole range of energy, they are known
as sum rules. By constraining the form of § p(q, w), sum rules may be used to prove
general statements or check the validity of approximations.

We start with the f~sum rule. This follows from considering the double commutator
[[H, pql; p—q)- In a system where the interaction depends only on density, the interaction
commutes with pg, so the commutator is determined by the kinetic energy

(We could also consider lattice models, with their own kinetic energy, but we’ll stick with

the simplest version). Taking p, = Zjvz L e "7 we find

The left hand side can be written in terms of S p(q, w), giving the f-sum rule

22
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4.2 Sum rules

*° dw Ng?
/ wS(q,w)g = o

Next we discuss the compressibility sum rule. The compressibility is defined in terms

of the volume V and pressure p as

g = _17879

At zero temperature, the pressure is
0E,
P=——=7
ov

where Ej, is the ground state energy. Since energy is an extensive quentity we expect
E, = Ve(p), where p = N /Vis the density, and €(p) the energy per unit volume. Then

51 = e (p).
o In the presence of a potential V' (r), energy density is

[6p]” + V(x)dp

€(po +0p) = 25,2
0

e Minimizing with respect to dp gives

(Vi) = 220 (o)

e Compare with perturbation theory
9% _ ¢(p). Then

Recall that the chemical potential u = 3

(0,0).

dp
_ 2 _
B= p N X

Now x’(q,w) can be written in terms of x”(q,w) (Kramers—Kronig) and x”(q,w) is
related to S,(q,w). This gives the compressibility sum rule at zero temperature

* S(qw)dw _ Npk

lim
q—0 o w 2 2

23



4 Response of Matter

@ Check

Why do we need lim_,,?

The compressibility sum rule is often written in terms of the speed of sound ¢ = (kmp) /2

as

lim/ S(qw)dw N
0

a—0 w 2T 2mc?’

Let’s consider a simple example. Some systems, notably Bose gases, have a zero temper-
ature dynamical structure factor that at low momentum has the following approximate
form

S,(q,w) ~ 278, (q)d(w — w(q)), (4.2)

where w(q) is the dispersion relation of the collective excitations. In reality, the §-function
is never infinitely sharp, but has a finite width on account of interactions between
excitations causing scattering and / or decay. In the approximation Equation 4.2, often
known as the single mode approximation, the f~sum rule tells us that

2
5p(a) = g

Let’s consider two important cases. First, suppose w(q) = %. This would be the case in
a Bose condensate with strictly no interactions, so that excitations out of the condensate
are free particles. Then

S,(a)=N.
This result corresponds to completely uncorrelated particle positions (Poisson statistics).
Second, suppose w(q) = ¢|q| i.e. linear dispersion with finite speed of sound. Then

_ Nlq|
2me

S,(q)

In this case the density fluctuations vanish as the wavevector goes to zero, indicating
long-range correlations between positions in the ground state.

@ Check

Check the compressibility sum rule in these two cases.
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4.2 Sum rules
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