
Quantum Hall Effect





The Fractional Quantum Hall Effect is one of the most remarkable phenomena in all of
condensed matter physics. In the presence of a strong magnetic field, charged particles
confined to move in the plane can form a series of new states of matter with bizarre
properties. Fortunately, our understanding of this menagerie is based almost entirely on
many body wavefunctions of a rather simple form.

The quantum Hall effect refers to quantization of the Hall conductivity 𝐺𝑥𝑦 = 𝐼𝑥
𝑉𝑦

into
integer multiples of the conductance quantum 𝑒2/ℎ. This phenomenon is obvserved in
two dimensional electon gases at low temperatures in a strong magnetic field perpendicular
to the plane. Some years after its discovery, the fractional quantum Hall effect was
observed, with 𝐺𝑥𝑦 = 𝜈𝑒2/ℎ, with 𝜈 taking simple fractional values 𝜈 = 1/3, 2/5, etc..

These fractional values are only the tip of an iceberg of remarkable phenomena, indicating
that the electrons are reorganizing into a bewildering variety of exotic states of matter,
characterized by excitations with fractional charge and statistics outside the boson /
fermion dichotomy discussed earlier. Even more surprisingly, our understanding of
these phases rests largely on guessing the right wavefunction to describe these strongly
interacting systems. How is such a thing possible? As we’ll see below, the wavefunction
is in fact strongly constrained by the presence of the magnetic field.

Reading: Girvin (2002), Stone (1992).
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1 Landau Levels

The first task is to discuss the states of a single particle of charge 𝑞 in 2D in a perpendicular
magnetic field. The Hamiltonian is

𝐻 = − 1
2𝑚

(∇ − 𝑖𝑞A)2 , (1.1)

where the vector potential 𝐴(𝑥, 𝑦) obeys

𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥 = 𝐵.

As usual, there is some (gauge) freedom in our choice of A. We choose symmetric
gauge

𝐴𝑥 = −1
2

𝐵𝑦, 𝐴𝑦 = 1
2

𝐵𝑥.

Next, we introduce complex coordinates

𝑧 = 𝑥 + 𝑖𝑦 ̄𝑧 = 𝑥 − 𝑖𝑦,

(The notation ̄𝑧 for the complex conjugate is neater when we need to write 𝜕 ̄𝑧 together
with the derivatives

𝜕𝑧 = 1
2

(𝜕𝑥 − 𝑖𝜕𝑦) 𝜕 ̄𝑧 = 1
2

(𝜕𝑥 + 𝑖𝜕𝑦) .

We can rewrite the Hamiltonian Equation 1.1 as

𝐻 = − 2
𝑚

(𝜕𝑧 − 𝑞𝐵 ̄𝑧
4

) (𝜕 ̄𝑧 + 𝑞𝐵𝑧
4

) + 𝜔𝑐
2

where 𝜔𝑐 = 𝑞𝐵
𝑚 is the cyclotron frequency. The Hamiltonian can be written in the

form

𝐻 = 𝐴†𝐴 + 𝜔𝑐
2

,
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1 Landau Levels

where the operator 𝐴 is defined as

𝐴 ≡ 𝑖√ 2
𝑚

(𝜕 ̄𝑧 + 𝑞𝐵𝑧
4

)

Notice that 𝑧† = ̄𝑧 while (𝜕 ̄𝑧)† = −𝜕𝑧. States that satisfy

(𝜕 ̄𝑧 + 𝑞𝐵𝑧
4

) 𝜓(𝑧, ̄𝑧) = 0

therefore have energy 𝜔𝑐/2. Furthermore, these are the lowest energy states as
⟨𝜓|𝐴†𝐴|𝜓⟩ ≥ 0, and so they belong to the lowest Landau level (LLL).

LIGHTBULB Check

Show that these states have the form

𝜓(𝑧, ̄𝑧) = 𝑓(𝑧) exp (−𝑞𝐵
4

|𝑧|2) ,

where 𝑓(𝑧) is an arbitrary analytic function. Note that we are assuming that 𝑞𝐵 > 0.
For 𝑞𝐵 < 0 𝑧 and ̄𝑧 are exchanged and the LLL states are antianaltyic.

You may recall that the Landau levels are highly degenerate. In symmetric gauge this
degeneracy may be seen to result from our freedom to choose the coefficients of this power
series, and yet the states are a very special subclass of the possible 2D wavefunctions
𝜓(𝑧, ̄𝑧).

It’s often convenient to work with the analytic part 𝑓(𝑧) of the wavefunction, with the
understanding that the inner product ⟨𝑓1|𝑓2⟩ is

⟨𝑓1|𝑓2⟩ = ∫ 𝑑2𝑧
2𝜋

𝑓1(𝑧)𝑓2(𝑧) exp (− |𝑧|2 /2) ,

(Note that 𝑑2𝑧 = 𝑑𝑥𝑑𝑦: our wavefunctions live in 2D) where we have chosen units in
which the magnetic length ℓ ≡ (𝑞𝐵)−1/2 is one. The physical meaning of this length
scale is that an area 2𝜋ℓ2 contains one flux quantum Φ0 = ℎ/𝑞 = 2𝜋/𝑞.

A possible orthonormal basis is

𝑓𝑛(𝑧) = 𝑧𝑛
√

2𝑛𝑛!
.

The Hilbert space of analytic functions is known as Segal–Bargmann–Fock space.
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2 Filled LLL of Fermions

Let’s imagine filling the LLL with fermions. As it stands, there’s no principle to suggest
how we do this, as all the states are degenerate. We can lift that degeneracy by adding a
rotationally symmetric harmonic potential

𝑉harm(𝑥, 𝑦) = 𝑣
2

(𝑥2 + 𝑦2) = 𝑣
2

|𝑧|2 . (2.1)

When this potential acts on a state in the LLL, the result is not a LLL state because
of the appearance of ̄𝑧 in 𝑉. Let’s suppose that the cyclotron energy 𝜔𝑐 that gives the
spacing between Landau levels is the largest energy scale in the problem. Then we should
consider only the action of 𝑉 in the LLL subspace.

LIGHTBULB Check

By considering matrix elements ⟨𝑓1|𝑉 |𝑓2⟩ between LLL states, show (by integrating
by parts) that it is possible to replace any occurrence of ̄𝑧 in 𝑉 with 2𝜕𝑧 acting on
the analytic part of the wavefunction.
Note that the order is important: all the 𝜕𝑧 must stand to the left of the 𝑧, Thus

𝑉harm ⟶ 𝑣𝜕𝑧𝑧 = 𝑣 (1 + 𝑧𝜕𝑧) . (2.2)

Applied to the basis states 𝑓𝑛(𝑧), 𝑉 just counts the degree: 𝑉harm𝑓𝑛 = 𝑣(1 + 𝑛)𝑓𝑛. The
ground state of noninteracting fermions therefore just amounts to filling the states |𝑓𝑛⟩
from the bottom. Identical arguments to those used in discussing the Fermi gas on the
ring then tell us that the ground state wavefunction of 𝑁 fermions is

Ψ(𝑧1, … , 𝑧𝑁) =
𝑁

∏
𝑗<𝑘

(𝑧𝑗 − 𝑧𝑘) exp (−1
4

𝑁
∑
𝑗=1

∣𝑧𝑗∣
2) (2.3)

LIGHTBULB Check

Show that the density is

𝜌1(𝑧, ̄𝑧) = 𝑒−|𝑧|2/2

2𝜋

𝑁−1
∑
𝑛=0

|𝑧|2𝑛

2𝑛𝑛!
= 1

2𝜋
Γ(𝑁, |𝑧|2/2)

(𝑁 − 1)!
. (2.4)

Here Γ(𝑠, 𝑥) = ∫∞
𝑥

𝑡𝑠−1𝑒−𝑡𝑑𝑡 is the incomplete gamma function.
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2 Filled LLL of Fermions

Figure 2.1: Density of particles in the LLL for 𝑁 = 100

At small ‖𝑧‖, we can approximate the sum in Equation 2.4 by extending the upper limit
to ∞, and we have 𝜌1 → 1

2𝜋 . In fact, the density is fixed at this value until we reach
∼

√
2𝑁, at which point the density falls to zero on the scale of the magnetic length.

Thus, with the potential Equation 2.1, the filled LLL is described by a circular droplet
of fixed density 𝜌1 = 1/(2𝜋), consistent with one state per flux quantum, which is the
known degeneracy of the LLL. This picture is in fact quite general: changing the confining
potential would cause the droplet to deform, but the density to remain constant (on the
macroscopic scale).
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3 The Laughlin Wavefunction

The theory of the fractional quantum Hall effect begins with Robert Laughlin’s famous
wavefunction Laughlin (1983) generalizing Equation 2.3

Ψ𝑚(𝑧1, … , 𝑧𝑁) =
𝑁

∏
𝑗<𝑘

(𝑧𝑗 − 𝑧𝑘)𝑚 exp (−1
4

𝑁
∑
𝑗=1

∣𝑧𝑗∣
2) . (3.1)

For this wavefunction to describe fermions, 𝑚 must be odd. Even 𝑚 describes bosons.
I want to emphasize first that despite the superficial similarity of Equation 2.3 and
Equation 3.1, they are very different beasts. While Equation 2.3 is an (antisymmetric)
product state Equation 3.1 is not, and indeed its expansion in product states is not
known in general. Furthermore, the excitations formed by modifying this state have
remarkable properties. As the abstract to Laughlin’s paper puts it:

This Letter presents variational ground-state and excited-state wave functions
which describe the condensation of a two-dimensional electron gas into a new
state of matter.

However, we’ll see that the 𝑚 = 1 an 𝑚 > 1 cases do have some common features. First,
we should try and explain where these wavefunctions came from. Conceptually, the
simplest case to discuss is that of bosons interacting via the repulsive potential

𝐻int = 𝑔 ∑
𝑗<𝑘

𝛿(r𝑗 − r𝑘), 𝑔 > 0 (3.2)

The Laughlin state Equation 3.1 with 𝑚 = 2 has zero interaction energy. In fact, any state
with zero interaction energy must have Ψ2(𝑧1, … , 𝑧𝑁) as a factor. But if a wavefunction
has a higher degree, then in the presence of the potential Equation 2.2 it will have a
higher energy than Ψ2(𝑧1, … , 𝑧𝑁). Thus Ψ2(𝑧1, … , 𝑧𝑁) is the ground state.

Laughlin argued that for electrons with Coulomb interaction Ψ𝑚(𝑧1, … , 𝑧𝑁) with 𝑚 odd
is a good variational wavefunction. The fact that (𝑧𝑗 − 𝑧𝑘) appears in a power higher
than one means that the particles tend to stay away from each other more than in the
𝑚 = 1 state, thus lowering their interaction.

To get more precise information about the behaviour of wavefunctions, Laughlin intro-
duced a powerful analogy between the probability distribution |Ψ𝑚(𝑧1, … , 𝑧𝑁)|2 of the
particles, and the Boltzmann distribution of particles in a classical 2D plasma. Before
doing that, it’s useful to actually ‘look’ at a typical configuration of particles.
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3 The Laughlin Wavefunction

Figure 3.1: Comparison of Monte Carlo samples from an uncorrelated (uniform) distrubu-
tion of points (left) vs. the Laughlin probability distribution |Ψ3(𝑧1, … 𝑧𝑁)|2
(right).

The striking feature of the right hand picture is the uniformity of the particle distribution,
in contrast with the sample of uncorrelated particles on the left. The plasma analogy
helps us to understand this, and a lot more.
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4 The Plasma Analogy

The Coulomb potential satisfies

∇2𝑉 = −𝑞𝛿(r).

In 2D the solution describing a point charge is

𝑉point(r) = − 𝑞
2𝜋

log |r| ,

while a constant background charge density −𝜌0 gives rise to a potential

𝑉bg(r) = 𝜌0
4

|r|2 .

Thus a system of identical charges in a background charge has an overall electrostatic
energy

𝑉 (r1, … , r𝑁) = − 𝑞2

2𝜋
∑
𝑗<𝑘

log ∣r𝑗 − r𝑘∣ + 𝑞𝜌0
4

∑
𝑗

∣r𝑗∣
2 .

Now we suppose that our plasma is at finite temperature, in which case the Boltzmann
factor giving the (unnormalized) probability of finding particles at locations r1, … , r𝑁
is

exp[−𝛽𝑉 (r1, … , r𝑁)] = |Ψ𝑚(r1, … , r𝑁)|2 ,

where we set 𝛽𝑞2/(2𝜋) = 2𝑚 and 𝛽𝑞𝜌0 = 2. This observation is Laughlin’s plasma
analogy. Do bear in mind that we are not talking about physical electrostatic fields –
this is a mathematical identification of two probability distributions.

Of course, we still have to analyze the statistical mechanical problem, which is hard to
do exactly. Since we are interested in the large 𝑁 limit, we can introduce a continuum
charge density 𝜌(r) and write the electrostatic energy as a functional of 𝜌(r) as

𝛽𝑉 [𝜌] = −𝑚 ∫ 𝑑2r 𝑑2r′ 𝜌(r) log |r − r′| 𝜌(r′) + 1
2

∫ 𝑑2r |r|2 𝜌(r).

LIGHTBULB Check

Show that minimizing the energy with respect to 𝜌(r) – corresponding to finding
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4 The Plasma Analogy

the most likely configuration – leads to the condition

−2𝑚 ∫ 𝑑2r′ log |r − r′| 𝜌(r′) + 1
2

|r|2 = 0.

Show that applying ∇2 to both sides gives

𝜌(r) = 1
2𝜋𝑚

.

On the basis of this approximation, we conclude that the density is fixed at 1/𝑚 of the
value we found for the 𝑚 = 1 case, which seems reasonable. The result applies where the
density is non-zero, so we get a uniform droplet as before, this time of radius

√
2𝑁𝑚.

1/𝑚 is called the filling fraction of the state.

Although we ignored the effect of summing over all configuration of the particles in the
partition function (i.e. we ignored the contribution of entropy to the free energy), it turns
out that this effect can be ignored in the large 𝑁 limit.

LIGHTBULB Check

One odd thing about the above calculation is that if the charge density is uniform,
how does the droplet know where to sit? The location of the origin is obviously
dictated by the minimum of the quadratic term in the energy, but we could have
located that anywhere in the plane and still had a uniform charge density. Cast
your mind back to the old problem of a mass undergoing simple harmonic motion
through a hole in the earth…
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Figure 4.1: A Laughlin Laughlin state
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5 Fractional Charge

Laughlin also suggested wavefunctions to describe excited states of the system, the
simplest being the quasihole wavefunction

Ψhole(𝑧1, … , 𝑧𝑁|𝑍) = (∏
𝑗

(𝑍 − 𝑧𝑗)) Ψ𝑚(𝑧1, … , 𝑧𝑁).

In the case of the 𝑚 = 2 state with the interaction Equation 3.2 discussed above, it’s
clear that this state still has zero interaction energy, although the harmonic potential
Equation 2.2 acts upon it non-trivially.

The plasma analogy allows us to see that this state describes a quasiparticle of fractional
charge. The concept of a quasiparticle is one that we’ll meet repeatedly in this course.
It describes a particle-like excitation of a many body system. Phonons – quantized
lattice vibrations – are a kind of quasiparticle that you will have met before. In quantum
field theory, particles themselves are described as quantized excitations of a system –
fields that pervade spacetime – so at a formal level there is little difference between the
particles of particle physics and the quasiparticles of condensed matter physics. The
physical difference is that in the latter case we know what the background medium is
made of!

Let’s see how the plasma picture is modified by the introduction of the quasihole. The
electrostatic energy is now

𝑉 (r1, … , r𝑁) = − 𝑞2

2𝜋𝑚
∑

𝑗
log ∣r𝑗 − R∣ − 𝑞2

2𝜋
∑
𝑗<𝑘

log ∣r𝑗 − r𝑘∣

+ 𝜌𝑞0
4

∑
𝑗

∣r𝑗∣
2 .

This is interpreted as the introduction of a charge 𝑞/𝑚 at point R = (𝑋, 𝑌 ), where
𝑍 = 𝑋 + 𝑖𝑌. The charges of the plasma will screen this charge, leaving a ‘hole’ in the
density distribution amounting to charge −𝑞/𝑚, corresponding to −1/𝑚 real particles.
The quasiholes have fractional charge!

A Monte Carlo simulation of a Laughlin state. You can change the inverse filling fraction
𝑚. The red dot is a quasihole: in fact for clarity it’s 20 quasiholes with an overall charge
of −20/𝑚.
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5 Fractional Charge

This means that the normalization integral is approximated by the Boltzmann weight
corresponding to the interaction of this fractional charge with the background charge
density

∫
𝑁

∏
𝑗=1

𝑑2𝑧𝑗 |Ψhole(𝑧1, … , 𝑧𝑁|𝑍)|2 ∼ exp ( 1
2𝑚

|𝑍|2) ,
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6 Fractional Statistics

Consider the two quasihole wavefunction

Ψ2 hole(𝑧1, … , 𝑧𝑁|𝑍1, 𝑍2) = (∏
𝑗

(𝑍1 − 𝑧𝑗)(𝑍2 − 𝑧𝑗)) Ψ𝑚(𝑧1, … , 𝑧𝑁).

The probability distribution |Ψ2 hole(𝑧1, … , 𝑧𝑁|𝑍1, 𝑍2)|2 corresponds to a Coulomb plasma
with two 1/𝑚 charges at the positions R1,2. There is no interaction term between these
two fixed charges, but as we have argued, each is overwhelmingly likely to be surrounded
by region of depleted density amounting to −1/𝑚 of a particle. The normalization
integral is then be given by the Boltzmann weight corresponding to the interaction of
these two depleted regions

∫
𝑁

∏
𝑗=1

𝑑2𝑧𝑗 |Ψ2 hole(𝑧1, … , 𝑧𝑁|𝑍1, 𝑍2)|2

∼ exp ( 2
𝑚

log |𝑍1 − 𝑍2| + 1
2𝑚

[|𝑍1|2 + |𝑍2|2]) .

If we try to intepret this as the probability density of a two particle wavefunction, we
arrive at

Ψ2 hole(𝑍1, 𝑍2) ∼ (𝑍1 − 𝑍2)1/𝑚 exp ( 1
4𝑚

[|𝑍1|2 + |𝑍2|2]) .

For 𝑚 = 1 this is an antisymmetric wavefunction, and may be interpreted as a pair of
fermionic holes. For 𝑚 > 1 the wavefunction is multi-valued, and changes by a phase 𝜋/𝑚
when 𝑍1 and 𝑍2 are exchanged. The quasiholes are anyons, particles with fractional
statistics intermediate between bosons and fermions.
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7 Appendix: Sampling from a complex
wavefunction

Suppose we have a complex wavefunction 𝜓(r, 𝑡) that solves the Schrödinger equation

𝑖𝜕𝜓
𝜕𝑡

= − 1
2𝑚

(∇ − 𝑖𝑞A)2 + 𝑉 (r)𝜓(r, 𝑡).

We can write 𝜓(r, 𝑡) = exp(𝑅(r, 𝑡)+𝑖𝑆(r, 𝑡)), where 𝑆(r, 𝑡) is the phase of the wavefunction
and the probability density is 𝜌 = |𝜓|2 = 𝑒2𝑅. With some massaging, we can arrive at
the following equation

𝜕𝜌
𝜕𝑡

= 1
2𝑚

∇2𝜌 − ∇ ⋅ (v𝜌)

with v = ∇𝑅 + ∇𝑆 − 𝑞A. This is a Fokker–Planck equation describing the evolution of
a probability distribution 𝜌 due to diffusion (with diffusion constant 𝐷 = 1

2𝑚) together
with a drift velocity v, which depends on the amplitude, phase, and the vector potential.
Although the potential 𝑉 (r) does not appear in this equation, it determines the functions
𝑅 and 𝑆.

We can sample from the probability distribution 𝜌 by simulating the stochastic differential
equation for the particle’s position

𝑑r𝑡 = √ 1
𝑚

𝑑B𝑡 + v𝑑𝑡,

where B𝑡 is a Brownian motion. In practical terms, this means that for a small time step
Δ𝑡 we update the position as

Δr𝑡 = √Δ𝑡
𝑚

(𝑋𝑖, 𝑌𝑖) + vΔ𝑡,

where 𝑋𝑡 and 𝑌𝑡 are sampled from a standard normal distribution of unit variance:
𝑋𝑡, 𝑌𝑡 ∼ 𝒩(0, 1)

Extended to the many body case and applied to the Laughlin wavefunction Equation 3.1
we arrive at the drift v𝑖 of particle 𝑖, written in terms of the positions r𝑖 = (𝑥𝑖, 𝑦𝑖)
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7 Appendix: Sampling from a complex wavefunction

v𝑖 = −1
2

r𝑖 + 1
2

r𝑖 × ẑ + 𝑚 ∑
𝑗≠1

(
r𝑖 − r𝑗 − (r𝑖 − r𝑗) × ẑ

|r𝑖 − r𝑗|2
) .

This is what I used for the Monte Carlo simulation of the Laughlin state.
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