Quantum Hall Effect






The Fractional Quantum Hall Effect is one of the most remarkable phenomena in all of
condensed matter physics. In the presence of a strong magnetic field, charged particles
confined to move in the plane can form a series of new states of matter with bizarre
properties. Fortunately, our understanding of this menagerie is based almost entirely on
many body wavefunctions of a rather simple form.

The quantum Hall effect refers to quantization of the Hall conductivity G, = ‘I/—L into
Y
integer multiples of the conductance quantum e /h. This phenomenon is obvserved in
two dimensional electon gases at low temperatures in a strong magnetic field perpendicular
to the plane. Some years after its discovery, the fractional quantum Hall effect was

observed, with G, = ve? /h, with v taking simple fractional values v = 1/3,2/5, etc..

These fractional values are only the tip of an iceberg of remarkable phenomena, indicating
that the electrons are reorganizing into a bewildering variety of exotic states of matter,
characterized by excitations with fractional charge and statistics outside the boson /
fermion dichotomy discussed earlier. Even more surprisingly, our understanding of
these phases rests largely on guessing the right wavefunction to describe these strongly
interacting systems. How is such a thing possible? As we’ll see below, the wavefunction
is in fact strongly constrained by the presence of the magnetic field.

Reading: Girvin (2002), Stone (1992).


https://en.wikipedia.org/wiki/Quantum_Hall_effect




1 Landau Levels

The first task is to discuss the states of a single particle of charge ¢ in 2D in a perpendicular
magnetic field. The Hamiltonian is

_ b oA
H——2m (V—iqA)~, (1.1)

where the vector potential A(z,y) obeys

9,A,—09,A, =B.
As usual, there is some (gauge) freedom in our choice of A. We choose symmetric

gauge
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Next, we introduce complex coordinates

z=x+1y z=1x—1y,

(The notation z for the complex conjugate is neater when we need to write 9 together
with the derivatives
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We can rewrite the Hamiltonian Equation 1.1 as
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where w, =
form

is the cyclotron frequency. The Hamiltonian can be written in the

H:NA+%,



1 Landau Levels

where the operator A is defined as

AEZ'\/2<85+W)
m 4

Notice that zf = z while (9.)T = —9,. States that satisfy

(az- 4 %) W(z2) =0

therefore have energy w,/2. Furthermore, these are the lowest energy states as
(| ATA|yp) > 0, and so they belong to the lowest Landau level (LLL).

@ Check
Show that these states have the form

v(z,2) = [z ewp (L0168

where f(z) is an arbitrary analytic function. Note that we are assuming that ¢B > 0.
For ¢B < 0 z and Z are exchanged and the LLL states are antianaltyic.

You may recall that the Landau levels are highly degenerate. In symmetric gauge this
degeneracy may be seen to result from our freedom to choose the coefficients of this power
series, and yet the states are a very special subclass of the possible 2D wavefunctions

U(z, 2).

It’s often convenient to work with the analytic part f(z) of the wavefunction, with the
understanding that the inner product (f;|f,) is

(i) = [ R hE exp (~ 12 /2).

(Note that d?z = dxdy: our wavefunctions live in 2D) where we have chosen units in
which the magnetic length ¢ = (¢B)~/? is one. The physical meaning of this length
scale is that an area 27¢? contains one flux quantum ®, = h/q = 27/q.

A possible orthonormal basis is

ZTL

Vonn!

fa(2) =

The Hilbert space of analytic functions is known as Segal-Bargmann—Fock space.


https://en.wikipedia.org/wiki/Segal%E2%80%93Bargmann_space

2 Filled LLL of Fermions

Let’s imagine filling the LLL with fermions. As it stands, there’s no principle to suggest
how we do this, as all the states are degenerate. We can lift that degeneracy by adding a
rotationally symmetric harmonic potential

(% 2 2 v 2

—(z°+ =—|z|". 2.1
(@ +y?) =2 |4 (21)
When this potential acts on a state in the LLL, the result is not a LLL state because
of the appearance of z in V. Let’s suppose that the cyclotron energy w, that gives the
spacing between Landau levels is the largest energy scale in the problem. Then we should
consider only the action of Vin the LLL subspace.

Vharm (.I, y) =

@ Check

By considering matrix elements (f;|V|f,) between LLL states, show (by integrating
by parts) that it is possible to replace any occurrence of z in V with 20, acting on
the analytic part of the wavefunction.

Note that the order is important: all the 0, must stand to the left of the z, Thus

Viarm — 00,2 = v (14 20,). (2.2)

Applied to the basis states f,(z), V just counts the degree: Vi ... f, = v(l+n)f,. The
ground state of noninteracting fermions therefore just amounts to filling the states | f,,)
from the bottom. Identical arguments to those used in discussing the Fermi gas on the
ring then tell us that the ground state wavefunction of N fermions is

N 1N,
U(zy, .y 2y) = H<ZJ — 2},) €xXp (—4 Z |21 ) (2.3)

i<k

@ Check
Show that the density is

A U I O N O A7)

2r 4= 27n! 21 (N —1)!

p1(z,2) = (2.4)

Here T'(s,z) = [ *ts~le7tdt is the incomplete gamma function.




2 Filled LLL of Fermions
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Figure 2.1: Density of particles in the LLL for N = 100

At small ||z|, we can approximate the sum in Equation 2.4 by extending the upper limit
to oo, and we have p; — i In fact, the density is fixed at this value until we reach

~ v/2N, at which point the density falls to zero on the scale of the magnetic length.

Thus, with the potential Equation 2.1, the filled LLL is described by a circular droplet
of fixed density p; = 1/(27), consistent with one state per flux quantum, which is the
known degeneracy of the LLL. This picture is in fact quite general: changing the confining
potential would cause the droplet to deform, but the density to remain constant (on the
macroscopic scale).



3 The Laughlin Wavefunction

The theory of the fractional quantum Hall effect begins with Robert Laughlin’s famous
wavefunction Laughlin (1983) generalizing Equation 2.3

N 1L,
U, (2., 2y) = H(ZJ — 2;,)™ exp (—42 |2,] ) . (3.1)

i<k

For this wavefunction to describe fermions, m must be odd. Even m describes bosons.
I want to emphasize first that despite the superficial similarity of Equation 2.3 and
Equation 3.1, they are very different beasts. While Equation 2.3 is an (antisymmetric)
product state Equation 3.1 is not, and indeed its expansion in product states is not
known in general. Furthermore, the excitations formed by modifying this state have
remarkable properties. As the abstract to Laughlin’s paper puts it:

This Letter presents variational ground-state and excited-state wave functions
which describe the condensation of a two-dimensional electron gas into a new
state of matter.

However, we’ll see that the m =1 an m > 1 cases do have some common features. First,
we should try and explain where these wavefunctions came from. Conceptually, the
simplest case to discuss is that of bosons interacting via the repulsive potential

Hyy = 925<r]‘ — 1), g>0 (3.2)

j<k

The Laughlin state Equation 3.1 with m = 2 has zero interaction energy. In fact, any state
with zero interaction energy must have WU, (zy, ..., zy) as a factor. But if a wavefunction
has a higher degree, then in the presence of the potential Equation 2.2 it will have a
higher energy than W, (zy, ..., 2zy). Thus ¥y(zq,...,2y) is the ground state.

Laughlin argued that for electrons with Coulomb interaction ¥, (zy, ..., zy) with m odd
is a good variational wavefunction. The fact that (z; — 2;) appears in a power higher
than one means that the particles tend to stay away from each other more than in the
m = 1 state, thus lowering their interaction.

To get more precise information about the behaviour of wavefunctions, Laughlin intro-
duced a powerful analogy between the probability distribution |¥, (2, ...,zy)|? of the
particles, and the Boltzmann distribution of particles in a classical 2D plasma. Before
doing that, it’s useful to actually ‘look’ at a typical configuration of particles.



3 The Laughlin Wavefunction

Figure 3.1: Comparison of Monte Carlo samples from an uncorrelated (uniform) distrubu-
tion of points (left) vs. the Laughlin probability distribution |¥5(2, ... zy)|?
(right).

The striking feature of the right hand picture is the uniformity of the particle distribution,
in contrast with the sample of uncorrelated particles on the left. The plasma analogy
helps us to understand this, and a lot more.



4 The Plasma Analogy

The Coulomb potential satisfies
V2V = —qd(r).
In 2D the solution describing a point charge is
Voo () = =51 log ]
while a constant background charge density —p, gives rise to a potential
Vig(r) = 22 [ef*.

Thus a system of identical charges in a background charge has an overall electrostatic
energy

' ) 2

Vi(ry,...,ry) = ~on Zlog r; — r.| + e Z |rj| .
j<k J

Now we suppose that our plasma is at finite temperature, in which case the Boltzmann

factor giving the (unnormalized) probability of finding particles at locations ry,...,ry
is

exp[—ﬁV(rl, LA rN)] - ‘\Ijm(rlv 7rN)’2 5

where we set 3¢%/(2r) = 2m and Bqp, = 2. This observation is Laughlin’s plasma
analogy. Do bear in mind that we are not talking about physical electrostatic fields —
this is a mathematical identification of two probability distributions.

Of course, we still have to analyze the statistical mechanical problem, which is hard to
do exactly. Since we are interested in the large N limit, we can introduce a continuum
charge density p(r) and write the electrostatic energy as a functional of p(r) as

BV p] = —m/d2rd2r’ p(r) log\r—r’\p(r’)Jr;/d?r If* p(r).

@ Check

Show that minimizing the energy with respect to p(r) — corresponding to finding



4 The Plasma Analogy

the most likely configuration — leads to the condition
2./ / / 1 2
—2m drlog|r—r[p(r)+§|r| =0.

Show that applying V? to both sides gives

On the basis of this approximation, we conclude that the density is fixed at 1/m of the
value we found for the m = 1 case, which seems reasonable. The result applies where the
density is non-zero, so we get a uniform droplet as before, this time of radius v2Nm.
1/m is called the filling fraction of the state.

Although we ignored the effect of summing over all configuration of the particles in the
partition function (i.e. we ignored the contribution of entropy to the free energy), it turns
out that this effect can be ignored in the large N limit.

@ Check

One odd thing about the above calculation is that if the charge density is uniform,
how does the droplet know where to sit? The location of the origin is obviously
dictated by the minimum of the quadratic term in the energy, but we could have
located that anywhere in the plane and still had a uniform charge density. Cast
your mind back to the old problem of a mass undergoing simple harmonic motion
through a hole in the earth...

10




tate

in s

A Laughlin Laughl

Figure 4.1

11






5 Fractional Charge

Laughlin also suggested wavefunctions to describe excited states of the system, the
simplest being the quasihole wavefunction

\Ilhole(zl? ) ZN|Z> = (H(Z - zy)) \I[m<zl¢ ) ZN)'
J
In the case of the m = 2 state with the interaction Equation 3.2 discussed above, it’s

clear that this state still has zero interaction energy, although the harmonic potential
Equation 2.2 acts upon it non-trivially.

The plasma analogy allows us to see that this state describes a quasiparticle of fractional
charge. The concept of a quasiparticle is one that we’ll meet repeatedly in this course.
It describes a particle-like excitation of a many body system. Phonons — quantized
lattice vibrations — are a kind of quasiparticle that you will have met before. In quantum
field theory, particles themselves are described as quantized excitations of a system —
fields that pervade spacetime — so at a formal level there is little difference between the
particles of particle physics and the quasiparticles of condensed matter physics. The
physical difference is that in the latter case we know what the background medium is
made of!

Let’s see how the plasma picture is modified by the introduction of the quasihole. The
electrostatic energy is now

V(ry,...,ry) 27rmz:log|r —R|——Zlog|r

Jj<k
Pq
+o 2l
J

This is interpreted as the introduction of a charge ¢/m at point R = (X,Y), where
Z = X +1Y. The charges of the plasma will screen this charge, leaving a ‘hole’ in the
density distribution amounting to charge —gq/m, corresponding to —1/m real particles.
The quasiholes have fractional charge!

A Monte Carlo simulation of a Laughlin state. You can change the inverse filling fraction
m. The red dot is a quasihole: in fact for clarity it’s 20 quasiholes with an overall charge
of —20/m.
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5 Fractional Charge

This means that the normalization integral is approximated by the Boltzmann weight
corresponding to the interaction of this fractional charge with the background charge
density

N
1
JEEL e 2Nl 2~ <—22)
/j:1 Zj| hole(zl’ 7ZN| )| exp 2m| ‘ )

14



6 Fractional Statistics

Consider the two quasihole wavefunction

\IIQ hole(zla cery ZN|Zla Z2) = (H(Zl - Zj)(Z2 - Zj)) \Ijm(zlv 7ZN)'
J

The probability distribution [Vy 1,010(21, -+ , 25|21, Z5)|? corresponds to a Coulomb plasma
with two 1/m charges at the positions R, 5. There is no interaction term between these
two fixed charges, but as we have argued, each is overwhelmingly likely to be surrounded
by region of depleted density amounting to —1/m of a particle. The normalization
integral is then be given by the Boltzmann weight corresponding to the interaction of
these two depleted regions

N
/ dQZj’\IIQ hole(zl7'--)ZN‘Zl’Z2)|2

Jj=1

2 1 2 2
~exp (= log|Z - 2ol + 5 12 +12,7]).

If we try to intepret this as the probability density of a two particle wavefunction, we
arrive at

1/m 1 2 2
Uy vore( 21, Zo) ~ (Zy — Zy)'™ exp (@ [’ZH + 2| ]) :

For m =1 this is an antisymmetric wavefunction, and may be interpreted as a pair of
fermionic holes. For m > 1 the wavefunction is multi-valued, and changes by a phase 7/m
when Z; and Z, are exchanged. The quasiholes are anyons, particles with fractional
statistics intermediate between bosons and fermions.

15






7 Appendix: Sampling from a complex
wavefunction

Suppose we have a complex wavefunction ¢ (r,¢) that solves the Schrédinger equation

oY 1 2
— = ——(V —iqA t).
i5 = (V—igA) + V(e )
We can write ¢(r,t) = exp(R(r,t)+iS(r,t)), where S(r, t) is the phase of the wavefunction
and the probability density is p = |1)|? = €2f*. With some massaging, we can arrive at
the following equation

a9 1

V2,V
ot 2mv p=V-(vp)
with v= VR + VS — qA. This is a Fokker—Planck equation describing the evolution of
a probability distribution p due to diffusion (with diffusion constant D = ﬁ) together

with a drift velocity v, which depends on the amplitude, phase, and the vector potential.
Although the potential V(r) does not appear in this equation, it determines the functions
R and S.

We can sample from the probability distribution p by simulating the stochastic differential
equation for the particle’s position

1
dr, = \/ —dB, + vdt,
m

where B, is a Brownian motion. In practical terms, this means that for a small time step

At we update the position as
[ At
m

where X, and Y, are sampled from a standard normal distribution of unit variance:
X, Y, ~N(0,1)

Extended to the many body case and applied to the Laughlin wavefunction Equation 3.1
we arrive at the drift v, of particle ¢, written in terms of the positions r; = (z;, ;)

17
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7 Appendix: Sampling from a complex wavefunction

1 1 -
vV, =—=r, + 1, ><z—|—mz
2 2 J#1

r,—r;—(r;—r;) X2
r; —1yl? '

This is what I used for the Monte Carlo simulation of the Laughlin state.
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