
Many Body Wavefunctions





We begin our study of many body quantum mechanics by examining a number of
systems where eigenstates and eigenvalues may be found explicitly for any number of
particles. Be warned that these situations are highly atypical – but are nevertheless
very informative.

Reading: (Baym 2018).
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1 Bosons and Fermions

An 𝑁 particle quantum system is described by a wavefunction of 𝑁 arguments
Ψ(r1,… , r𝑁). The starting point of many body quantum mechanics is that:

Systems of indistinguishable particles are described by totally symmetric or
totally antisymmetric wavefunctions.

Just to be clear, totally symmetric means the wavefunction is unchanged by exchanging
any two coordinates, whereas totally antisymmetric means that it changes sign.

A good fraction of this course is devoted to exploring the ramifications of this fact.
Perhaps we should therefore give a very quick summary of why it appears to be true.

The first question is: what are indistinguishable particles? I’ll give a theorist’s answer.
Indistinguishable particles are those described by Hamiltonians that are invariant under
permuting the particle’s labels. Thus the sum of single particle Hamiltonians

𝐻 =
𝑁
∑
𝑖=1

[−∇2
𝑖

2𝑚
+ 𝑉 (ri)]

[did you remember that ℏ = 1?] describes indistinguishable particles while

𝐻 =
𝑁
∑
𝑖=1

[− ∇2
𝑖

2𝑚𝑖
+ 𝑉 (ri)]

does not, on account of the masses being all different. Any time we have a symmetry
operation that commutes with the Hamiltonian, the eigenstates of that symmetry are
preserved by time evolution with that Hamiltonian. Thus a symmetric potential 𝑉 (𝑥) =
𝑉 (−𝑥) commutes with the parity operation 𝑥 → −𝑥, so the eigenstates of this operation
– the even and odd wavefunctions – are preserved by time evolution.

The Hamiltonian of indistinguishable particles commutes with every operator of particle
exchange, defined by

𝑃𝑖𝑗Ψ(r1,… , r𝑖,… , r𝑗,… r𝑁) = Ψ(r1,… , r𝑗,… , r𝑖,… r𝑁).

These operators satisfy 𝑃 2
𝑖𝑗 = 𝟙, so their eigenvalues are ±1, corresponding to states that

are either symmetric or antisymmetric under exchange. The only simultaneous eigenstates
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1 Bosons and Fermions

of all particle exchange operations (note that different exchanges don’t commute if they
involve the same particle) are the totally symmetric and antisymmetric wavefunctions.
Thus these properties are preserved by time evolution. It’s always been this way.

We classify particles into symmetric bosons and antisymmetric fermions, named for
Bose and Fermi respectively (the whimsical terminology is Dirac’s). The distinction
works equally well for composite particles, provide we ignore the internal degrees of
freedom and discuss only the center of mass coordinate.

All matter in the universe is made up of fermions: electrons, quarks, etc., but you can
easily convince yourself that an even number of fermions make a composite boson (e.g. a
4He atom with two electrons, two neutrons and two protons) and an odd number make a
composite fermion (3He has one fewer neutron, which in turn is made up of 3 quarks).

1.1 Two Particles

A pair of particles is described by a wavefunction Ψ(x,y). If we are dealing with
distinguishable particles, the wavefunction of a pair of particles in states |𝜑1⟩ and |𝜑2⟩
would be

Ψ(r1, r2) = 𝜑1(r1)𝜑2(r2). (1.1)

Accounting for indistinguishability, we have either

Ψ(r1, r2) =
1√
2
[𝜑1(r1)𝜑2(r2) ± 𝜑2(r1)𝜑1(r2)] (1.2)

with the upper sign for bosons and the lower for fermions (The 1/
√
2 yields a normalized

wavefunction if 𝜑1,2(r) are orthonormal.). Note in particular that when 𝜑1 = 𝜑2 the
fermion wavefunction vanishes. This illustrates the Pauli exclusion principle, that no
two identical fermions can be in the same quantum state. There is no such restriction for
bosons.

Classically, if you had a function 𝜌1(r1) describing the probability density of finding
particle 1 at position r1, and the corresponding quantity for an independent particle 2,
you would have no hesitation in concluding that the joint distribution is

𝜌12(r1, r2) = 𝜌1(r1)𝜌2(r2).
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1.1 Two Particles

This also follows from taking the square modulus of Equation 1.1. The result implied by
the wavefunction Equation 1.2 is

𝜌12(r1, r2) =
1
2
[𝜌1(r1)𝜌2(r2) + 𝜌1(r2)𝜌2(r1)]

± 1
2
[𝜑1(r1)𝜑∗

2(r1)𝜑2(r2)𝜑∗
1(r2) + 𝜑1(r2)𝜑∗

2(r2)𝜑2(r1)𝜑∗
1(r1)] .

In particular, 𝜌12(r, r) = 0 for fermions, and 𝜌12(r, r) = 2𝜌1(r)𝜌2(r) for bosons. The
first result is natural from the standpoint of the exclusion principle, while the second is
perhaps more surprising. This shows that, because probabilities arise from the squares of
amplitudes, identical particles in quantum mechanics are never truly independent.

One dramatic illustration of this deviation from our classical intuition is provided by the
Hong–Ou–Mandel effect in quantum optics. In simplified terms, we imagine wavepackets
describing two photons (bosons) approaching a 50:50 beam splitter from either side.
Because of the unitarity of scattering, the two photons end up in orthogonal states. For
example,

|Left⟩ → 1√
2
(|Left⟩ + |Right⟩)

|Right⟩ → 1√
2
(|Left⟩ − |Right⟩)

LIGHTBULB Check

If we start in
1√
2
[𝜑L(r1)𝜑R(r2) ± 𝜑R(r1)𝜑L(r2)]

What state do we end up in?

Figure 1.1: Four possible outcomes after the passage of two bosons through a beam
splitter.
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1 Bosons and Fermions

1.2 Product States

The Hamiltonian of a system of 𝑁 identical noninteracting particles is a sum of 𝑁 identical
single particle Hamiltonians, that is, with each term acting on a different particle
coordinate

𝐻 =
𝑁
∑
𝑖=1

[−∇2
𝑖

2𝑚
+ 𝑉 (r𝑖)]

where 𝑚 is the particle mass, and 𝑉 (r) is a potential experienced by the particles.

Let’s denote the eigenstates of the single particle Hamiltonian by {𝜑𝛼(r)} , and the
corresponding eigenenergies by {𝐸𝛼}, where 𝛼 is a shorthand for whatever quantum
numbers are used to label the states.

A set of labels {𝛼𝑖} 𝑖 = 1, 2,…𝑁 tells us the state of each of the particles. Thus we can
write an eigenstate of 𝑁 distinguishable particles with energy 𝐸 = ∑𝑁

𝑖=1 𝐸𝛼𝑖
as

|Ψ𝛼1𝛼2⋯𝛼𝑁
⟩ = 𝜑𝛼1

(r1)𝜑𝛼2
(r2)⋯𝜑𝛼𝑁

(rN) (1.3)

(We will frequently switch between the wavefunction 𝜑(x) and bra-ket notation |𝜑⟩. In
the latter notation the product wavefunction in Equation 1.1 is written |𝜑1⟩|𝜑2⟩)

Such states are called product states. A general state will be expressed as a superposition
of product states: they are special states which provide a frequently convenient basis.

As we’ve just discussed, however, we should really be dealing with a totally symmetric or
totally antisymmetric wavefunction, depending on whether our identical particles are
bosons or fermions. The generalization of the two-particle states Equation 1.2 to many
particles involves summing over all permutations of particle coordinates r𝑖 with respect
to the state labels 𝛼𝑖. To write these down we introduce the operators of symmetrization
and antisymmetrization

𝒮 = 1
𝑁!

∑
𝜋

𝑃𝜋, 𝒜 = 1
𝑁!

∑
𝜋

sgn(𝜋)𝑃𝜋 (1.4)

Here’s the definition of the various quantities in Equation 1.4:

• The sums are over all 𝑁! permutations 𝜋 of 𝑁 objects. One way to think of a
permutation 𝜋 is as a one-to-one correspondence (or bijection) between the set
{1, 2,…𝑁} and itself, so that 1 is mapped to 𝜋(1), etc..

• 𝑃𝜋 denotes the corresponding permutation operator

𝑃𝜋Ψ(r1, r2,… r𝑁) = Ψ(r𝜋(1), r𝜋(2),… r𝜋(𝑁))
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1.2 Product States

• sgn(𝜋) is the signature of the permutation, equal to +1 for permutations involving
an even number of exchanges (transpositions), and −1 for an odd number. Note
that although the same permutation can be accomplished with many different sets
of transpositions, the number of transpositions is either always odd or always even.

Equation 1.4 allows us to write the totally symmetric and totally antisymmetric versions
of Equation 1.3 as

|Ψ𝑆
𝛼1𝛼2⋯𝛼𝑁

⟩ = √
𝑁!

∏𝛼 𝑁𝛼!
𝒮 𝜑𝛼1

(r1)𝜑𝛼2
(r2)⋯𝜑𝛼𝑁

(rN)

= √
1

𝑁!∏𝛼 𝑁𝛼!
∑

𝜋
𝜑𝛼1

(r(1))𝜑𝛼2
(r(2))⋯𝜑𝛼𝑁

(r(N))

|Ψ𝐴
𝛼1𝛼2⋯𝛼𝑁

⟩ =
√
𝑁!𝒜𝜑𝛼1

(r1)𝜑𝛼2
(r2)⋯𝜑𝛼𝑁

(rN)

= √ 1
𝑁!

∑
𝜋

sgn(𝜋)𝜑𝛼1
(r(1))𝜑𝛼2

(r(2))⋯𝜑𝛼𝑁
(r(N)),

(1.5)

where the occupation numbers {𝑁𝛼} in the boson case give the number of particles
in state 𝛼. Note that it doesn’t matter if we permute coordinates or state labels 𝛼𝑖 in
Equation 1.5. Thus the symmetric product state can also be written

|Ψ𝑆
𝛼1𝛼2⋯𝛼𝑁

⟩ = √
1

𝑁!∏𝛼 𝑁𝛼!
∑

𝜋
𝜑𝛼𝜋(1)

(r1)𝜑𝛼𝜋(2)
(r2)⋯𝜑𝛼𝜋(𝑁)

(rN).

These normalization factors yield normalized wavefunctions if the single particle state
|𝜑𝛼⟩ are orthonormal (as the eigenstates of the single particle Hamiltonian are). In the
fermion case each 𝑁𝛼 is either 0 or 1 so the prefactor simplifies. Since the order of the 𝛼
indices is irrelevant in the boson case, and amounts only to a sign in the fermion case,
states based on a given set of single particle states are more efficiently labeled by the
occupation numbers. In terms of these numbers the total energy is

𝐸 =
𝑁
∑
𝑖=1

𝐸𝛼𝑖
= ∑

𝛼
𝑁𝛼𝐸𝛼

LIGHTBULB Check

Verify that the normalization factors in Equation 1.5 are correct.

A more formal way of putting things is as follows. We first consider the space spanned by
states of the form Equation 1.3. Then we introduce the operators 𝒮 and 𝒜, noting that
𝒮2 = 𝒮 and 𝒜2 = 𝒜. In other words, there’s no point symmetrizing or antisymmetrizing
more than once (we say that the operators are idempotent). Any eigenvalue of one of
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1 Bosons and Fermions

these operators is therefore either one or zero. The states with 𝒮 = 1 are the symmetric
states, and those with 𝒜 = 1 are antisymmetric. You can easily convince yourself that if
a state has one of 𝒮 or 𝒜 equal to one, the other is zero. This defines symmetric and
antisymmetric subspaces, consisting of the admissible boson and fermion wavefunctions.

Note that the fermion wavefunction takes the form of a Slater determinant (though it
appears first in {% cite dirac1926 %}).

|Ψ𝐴
𝛼1𝛼2⋯𝛼𝑁

⟩ = 1√
𝑁!

∣
∣
∣
∣

𝜑𝛼1
(r1) 𝜑𝛼1

(r2) ⋯ 𝜑𝛼1
(rN)

𝜑𝛼2
(r1) ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯

𝜑𝛼𝑁
(r1) ⋯ ⋯ 𝜑𝛼𝑁

(rN)

∣
∣
∣
∣

(1.6)

The vanishing of a determinant when two rows or two columns are identical means that
the wavefunction is zero if two particle coordinates coincide (r𝑖 = r𝑗), or if two particles
occupy the same state (𝛼𝑖 = 𝛼𝑗).
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2 The 1D Fermi Gas

Let’s consider perhaps the simplest many particle system one can think of: noninteracting
particles on a ring. If the ring has circumference 𝐿, the single particle eigenstates are

𝜑𝑛(𝑥) =
1√
𝐿

exp (𝑖𝑘𝑛𝑥) ,

with 𝑘𝑛 = 2𝜋𝑛
𝐿 , 𝑛 ∈ ℤ. The corresponding energies are 𝐸𝑛 = 𝑘2

𝑛
2𝑚 .

2.1 Ground State

Let’s find the 𝑁 particle ground state. For bosons every particle is in the state |𝜑0⟩ with
zero energy: 𝑁0 = 𝑁. Thus

Ψ𝑆
0 (𝑥1, 𝑥2,…𝑥𝑁) = 1

𝐿𝑁/2

That was easy! The fermion case is harder.

Since the occupation of each level is at most one, the lowest energy is obtained by filling
each level with one particle, starting at the bottom. If we have an odd number of particles,
this means filling the levels with 𝑛 = −(𝑁 − 1)/2,−(𝑁 − 3)/2,… ,−1, 0, 1… (𝑁 − 1)/2
(for an even number of particles we have to decide whether to put the last particle at
𝑛 = ±𝑁/2). Introducing the complex variables

𝑧𝑖 = exp(2𝜋𝑖𝑥𝑖/𝐿),

the Slater determinant Equation 1.6 becomes

Ψ𝐴
0 (𝑥1,… , 𝑥𝑁) =

∣
∣
∣
∣
∣

𝑧−(𝑁−1)/2
1 𝑧−(𝑁−1)/2

2 ⋯ 𝑧−(𝑁−1)/2
𝑁

𝑧−(𝑁−3)/2
1 ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯
𝑧(𝑁−1)/2

1 ⋯ ⋯ 𝑧(𝑁−1)/2
𝑁

∣
∣
∣
∣
∣

. (2.1)
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2 The 1D Fermi Gas

Let’s evaluate this complicated looking expression in a simple case. With three particles
we have

Ψ𝐴
0 (𝑥1, 𝑥2, 𝑥3) = ∣

𝑧−1
1 𝑧−1

2 𝑧−1
3

1 1 1
𝑧1 𝑧2 𝑧3

∣ = 𝑧1
𝑧2

− 𝑧2
𝑧1

+ 𝑧3
𝑧1

− 𝑧1
𝑧3

+ 𝑧2
𝑧3

− 𝑧3
𝑧2

= (√
𝑧3
𝑧1

−√
𝑧1
𝑧3

)(√
𝑧1
𝑧2

−√
𝑧2
𝑧1

)(√
𝑧2
𝑧3

−√
𝑧3
𝑧2

)

∝ sin(𝜋[𝑥1 − 𝑥2]
𝐿

) sin(𝜋[𝑥3 − 𝑥1]
𝐿

) sin(𝜋[𝑥2 − 𝑥3]
𝐿

)

The vanishing of the wavefunction when 𝑥𝑖 = 𝑥𝑗 is consistent with the Pauli principle.
You should check that additionally it is periodic and totally antisymmetric.

Equation 2.2 generalizes for any (odd) 𝑁 so that the ground state Slater determinant
Equation 2.1 is proportional to

Ψ𝐴
0 (𝑥1,… , 𝑥𝑁) ∝

𝑁
∏
𝑖<𝑗

sin(
𝜋[𝑥𝑖 − 𝑥𝑗]

𝐿
) . (2.2)

LIGHTBULB Check

Show this using the Vandermonde determinant

∣
∣
∣
∣

1 1 ⋯ 1
𝑧1 𝑧2 ⋯ ⋯
𝑧2

1 𝑧2
2 ⋯ ⋯

𝑧𝑁−1
1 𝑧𝑁−1

2 ⋯ 𝑧𝑁−1
𝑁

∣
∣
∣
∣

=
𝑁
∏
𝑖<𝑗

(𝑧𝑗 − 𝑧𝑖)

which can be proved in a variety of ways. Proving directly that Equation 2.2 is
an eigenstate of the Hamiltonian is not easy, but can be accomplished using the
identity

cot(𝑥 − 𝑦) cot(𝑦 − 𝑧) + cot(𝑦 − 𝑧) cot(𝑧 − 𝑥) + cot(𝑧 − 𝑥) cot(𝑥 − 𝑦) = 1.

Check carefully that Equation 2.2 is periodic and totally antisymmetric.

Let’s take the opportunity to introduce some terminology. The wavevector of the last
fermion added is called the Fermi wavevector and denoted 𝑘F. In this case 𝑘F = (𝑁−1)𝜋

𝐿 .
Its energy 𝐸𝐹 = 𝑘2

F
2𝑚 is the Fermi energy.
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2.2 Density; Density Matrix; Pair Distribution

2.2 Density; Density Matrix; Pair Distribution

Having a many particle wave function is one thing, but what to do with it? Bear in mind
that Equation 2.2 is just about the simplest fermion state you can imagine, but it’s not
immediately clear what it is telling us.

|Ψ(𝑥1,… , 𝑥𝑁)|2 is the probability distribution of the positions of the particles. If we were
able to take a photograph of the positions of the particles at an instant in time, this
would correspond to taking a sample from the probability distribution. In terms of the
complex variables 𝑧𝑗, it would look something like this:

(a) A sample from the probability distribution
|Ψ𝐴

0 (𝑧1,… , 𝑧𝑁)|2 for 50 particles.

(b) Uniformly distributed points on the circle de-
scribed by |Ψ𝑆

0 (𝑥1, 𝑥2,…𝑥𝑁)|2. The particle
positions are uncorrelated.

Figure 2.1: Distribution of particle positions for noninteracting fermion and boson ground
states.

Since |Ψ(𝑥1,… , 𝑥𝑁)|2 is the probability distribution of the positions of the particles, we
can use it to find the marginal probability distributions for any subset of the particles.
Of course, since the particles are identical, it doesn’t matter which ones we choose, just
the number.

The one particle distribution is related to the average density of particles, given by

𝜌1(𝑥1) = 𝑁 ∫𝑑𝑥2 …𝑑𝑥𝑁 |Ψ(𝑥1, 𝑥2,… , 𝑥𝑁)|2. (2.3)

Note that although I use the symbol 𝜌, density is always going to be number density (not
the mass density).

LIGHTBULB Check

Can you explain why this is the density? Think about the simpler case of two
particles, with discrete locations. Why is the expected number of particles at
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2 The 1D Fermi Gas

position 𝑥
𝑁𝑥 = ∑

𝑦
[𝑃 (𝑥, 𝑦) + 𝑃(𝑦, 𝑥)] ?

What if we have more particles?

Normalization of the wavefunction then implies

∫𝑑𝑥𝜌1(𝑥) = 𝑁.

In a translationally invariant system like the fermion gas on a ring we expect the average
density to be constant.

We can regard Equation 2.3 as an expectation of a density operator

𝜌(𝑥) = ∑
𝑗

𝛿(𝑥 − 𝑥𝑗), (2.4)

so that 𝜌1(𝑥) = ⟨Ψ|𝜌(𝑥)|Ψ⟩.

The single particle density matrix is a generalization of the expectation of the density,
and is defined as (we’ll see shortly why this is a useful quantity)

𝑔(𝑥, 𝑦) ≡ 𝑁 ∫𝑑𝑥2 …𝑑𝑥𝑁 Ψ(𝑥, 𝑥2,… , 𝑥𝑁)Ψ∗(𝑦, 𝑥2,… , 𝑥𝑁). (2.5)

Note that 𝑔(𝑥, 𝑥) = 𝜌1(𝑥).

LIGHTBULB Check

Show that the average number of particles in a single particle state |𝜓⟩ is

̄𝑁𝜓 = ∫𝑑𝑥𝑑𝑦𝜓∗(𝑥)𝑔(𝑥, 𝑦)𝜓(𝑦). (2.6)

LIGHTBULB Check

Starting from the Slater determinant Equation 2.1 (i.e. not from the explicit form
Equation 2.2), show that 𝑔(𝑥, 𝑦) for the ground state of the Fermi gas is

𝑔(𝑥, 𝑦) = 1
𝐿

∑
|𝑘|<𝑘F

𝑒𝑖𝑘(𝑥−𝑦) = ∫
𝑘F

𝑘F

𝑑𝑘
2𝜋

𝑒𝑖𝑘(𝑥−𝑦) = 𝑛sin [𝑘F(𝑥 − 𝑦)]
𝑘F(𝑥 − 𝑦)

where 𝑛 ≡ 𝑘F
𝜋 is the average density.
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2.2 Density; Density Matrix; Pair Distribution

LIGHTBULB Check

Find the average number of particles in a momentum state |𝑘⟩ using Equation 2.6

̄𝑁𝑘 = {
1 |𝑘| ≤ 𝑘F

0 |𝑘| > 𝑘F
. (2.7)

Note that in a translationally invariant system 𝑔(𝑥, 𝑦) = 𝑔(𝑥−𝑦), and is the Fourier
transform of ̄𝑁𝑘.

INFO Note

To understand the origin of the name single particle density matrix, recall that
the density matrix 𝜚 describes a mixed state of a quantum system, and is the
appropriate description when the quantum state is not known. 𝜚 is a positive
definite hermitian operator satisfying tr𝜚 = 1. Its spectral resolution

𝜚 = ∑
𝛼

𝑝𝛼|𝜑𝛼⟩⟨𝜑𝛼|,

can be thought of as a statistical mixture of different quantum states |𝜑𝛼⟩ with
probabilities 𝑝𝛼.
One natural way in which density matrices arise from pure states is as follows. The
Hilbert space of a composite system consists of a tensor product of two or more
components ℋ𝐴𝐵 = ℋ𝐴 ⊗ℋ𝐵. Starting from the density matrix corresponding to
a pure state, we can obtain a density matrix for the component 𝐴 alone by ‘tracing
out’ the 𝐵 subsystem.

𝜚𝐴 = tr𝐵|Ψ⟩⟨Ψ|, |Ψ⟩ ∈ ℋ𝐴𝐵.

The probability for system 𝐴 to be in state |𝜓⟩ ∈ ℋ𝐴 is

𝑃𝜓 = ⟨𝜓|𝜚|𝜓⟩.

Thus you can think of the single particle density matrix Equation 2.5 as arising
from tracing out 𝑁 − 1 particles from an 𝑁-particle system.
We can also consider marginal probability distribution of a pair of particles, and
define the pair distribution function

𝜌2(𝑥1, 𝑥2) = 𝑁(𝑁 − 1)∫𝑑𝑥3 …𝑑𝑥𝑁 |Ψ(𝑥1, 𝑥2,… , 𝑥𝑁)|2 .

The prefactor is to account for all pairs of particles.
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2 The 1D Fermi Gas

LIGHTBULB Check

Starting from the Slater determinant Equation 2.1, show that

𝜌2(𝑥1, 𝑥2) = 𝑛2 [1 − (sin [𝑘F(𝑥1 − 𝑥2)]
𝑘F(𝑥1 − 𝑥2)

)
2

] .

This vanishes at 𝑥1 = 𝑥2, consistent with the Pauli principle.

A natural question:
𝜌2(𝑥1, 𝑥2)

?= ⟨Ψ|𝜌(𝑥1)𝜌(𝑥2)|Ψ⟩.

Almost. Looking back at Equation 2.4, we see that the product of two density operators
will contain terms involving the same particle, which are absent from 𝜌2(𝑥1, 𝑥2).

LIGHTBULB Check

Show that the correct relationship is

𝜌2(𝑥1, 𝑥2) = ⟨Ψ|𝜌(𝑥1)𝜌(𝑥2)|Ψ⟩ − 𝜌1(𝑥1)𝛿(𝑥1 − 𝑥2).

2.3 Impenetrable Bose Gas

There’s a bit more mileage in the 1D Fermi gas yet. Consider the following Hamiltonian

𝐻 = − 1
2𝑚

∑
𝑗

𝜕2

𝜕𝑥2
𝑗
+

≡𝐻int

⏞⏞⏞⏞⏞⏞⏞𝑐∑
𝑗<𝑘

𝛿(𝑥𝑗 − 𝑥𝑘) .

The second term represents an interaction between pairs of particles. Of course, this
model is rather special, as (1) it’s 1D and (2) the interaction potential is a 𝛿-function.
Nevertheless, it represents a huge step up in difficulty from the noninteracting examples
we’ve discussed so far. At least, it does for bosons. For fermions, the wavefunctions
vanish at coincident points, and so the interaction has no effect at all!

For bosons, it happens that the Hamiltonian can still be solved exactly. For now, however,
we’ll concern ourselves only with the limit of infinite interaction: 𝑐 → ∞, sometimes
called the impenetrable limit. In this case, the eigenenergies coincide with those of
the free fermion problem, and the eigenstates are just the modulus of the corresponding
fermion eigenstate.

LIGHTBULB Check

Why?
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2.3 Impenetrable Bose Gas

Just like that, we’ve solved our first interacting many body system (and with infinite
coupling, no less)!

Thus the ground state on the ring has the form

Ψ0(𝑥1,… , 𝑥𝑁) =
𝑁
∏
𝑖<𝑗

∣sin(
𝜋[𝑥𝑖 − 𝑥𝑗]

𝐿
)∣ .

It’s not hard to see why this works. For a state to have a finite energy, the wavefunction
must vanish whenever two coordinates coincide. This is because the interation energy
has the expectation value

⟨Ψ|𝐻int|Ψ⟩ = 𝑐𝑁(𝑁 − 1)∫𝑑𝑥1 ⋯𝑑𝑥𝑁−1 |Ψ(𝑥1, 𝑥1, 𝑥2,… , 𝑥𝑁|2

But we already have a complete set of eigenstates that obey this condition, namely the
free fermion Slater determinants. It remains to make them symmetric functions by taking
the modulus.

This mapping is quite powerful, and allows us to calculate any observable of the im-
penetrable Bose gas in terms of free fermions as long as that observable is insensitive
to taking the modulus of the wavefunction. Thus the average density 𝜌1(𝑥) and pair
distribution 𝜌2(𝑥1, 𝑥2) of the previous section can be found in this way, but the single
particle density matrix 𝑔(𝑥, 𝑦) cannot.

LIGHTBULB Check

Show this explicitly.

This means that the momentum distribution is not given by Equation 2.7. Finding
𝑔(𝑥, 𝑦) for the impenetrable Bose gas is in fact really hard. We’ll see in a later lecture
how to obtain some of its important features.

Baym, Gordon. 2018. Lectures on Quantum Mechanics. CRC Press.
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