Many Body Wavefunctions






We begin our study of many body quantum mechanics by examining a number of
systems where eigenstates and eigenvalues may be found explicitly for any number of

particles. Be warned that these situations are highly atypical — but are nevertheless
very informative.

Reading: (Baym 2018).







1 Bosons and Fermions

An N particle quantum system is described by a wavefunction of N arguments
U(ry,...,ry). The starting point of many body quantum mechanics is that:

Systems of indistinguishable particles are described by totally symmetric or
totally antisymmetric wavefunctions.

Just to be clear, totally symmetric means the wavefunction is unchanged by exchanging
any two coordinates, whereas totally antisymmetric means that it changes sign.

A good fraction of this course is devoted to exploring the ramifications of this fact.
Perhaps we should therefore give a very quick summary of why it appears to be true.

The first question is: what are indistinguishable particles? I'll give a theorist’s answer.
Indistinguishable particles are those described by Hamiltonians that are invariant under
permuting the particle’s labels. Thus the sum of single particle Hamiltonians

H= ZN:[—VQJFV )]

=1

[did you remember that h = 1?] describes indistinguishable particles while

does not, on account of the masses being all different. Any time we have a symmetry
operation that commutes with the Hamiltonian, the eigenstates of that symmetry are
preserved by time evolution with that Hamiltonian. Thus a symmetric potential V' (z) =
V(—x) commutes with the parity operation x — —z, so the eigenstates of this operation
— the even and odd wavefunctions — are preserved by time evolution.

The Hamiltonian of indistinguishable particles commutes with every operator of particle
exchange, defined by

PZ]\IJ(I'17 ves ,I'Z-, ves ,I'j, ees I'N) — \I’<I‘1, eey I'], ceey I'Z, een I‘N>.

These operators satisfy P2 =1, so their eigenvalues are +1, corresponding to states that
are either symmetric or antlsymmetric under exchange. The only simultaneous eigenstates



1 Bosons and Fermions

of all particle exchange operations (note that different exchanges don’t commute if they
involve the same particle) are the totally symmetric and antisymmetric wavefunctions.
Thus these properties are preserved by time evolution. It’s always been this way.

We classify particles into symmetric bosons and antisymmetric fermions, named for
Bose and Fermi respectively (the whimsical terminology is Dirac’s). The distinction
works equally well for composite particles, provide we ignore the internal degrees of
freedom and discuss only the center of mass coordinate.

All matter in the universe is made up of fermions: electrons, quarks, etc., but you can
easily convince yourself that an even number of fermions make a composite boson (e.g. a
4He atom with two electrons, two neutrons and two protons) and an odd number make a
composite fermion (3He has one fewer neutron, which in turn is made up of 3 quarks).

1.1 Two Particles

A pair of particles is described by a wavefunction ¥(x,y). If we are dealing with
distinguishable particles, the wavefunction of a pair of particles in states |¢;) and |¢,)
would be

U(ry,ry) = @1(ry)pa(rs). (1.1)

Accounting for indistinguishability, we have either

U(ry,ry) = \2[@1(1'1)@2(1'2) + @a(r1) 1 (ry)] (1.2)

with the upper sign for bosons and the lower for fermions (The 1/ V2 yields a normalized
wavefunction if ¢, ,(r) are orthonormal.). Note in particular that when ¢; = ¢, the
fermion wavefunction vanishes. This illustrates the Pauli exclusion principle, that no
two identical fermions can be in the same quantum state. There is no such restriction for
bosons.

Classically, if you had a function p;(r;) describing the probability density of finding

particle 1 at position r;, and the corresponding quantity for an independent particle 2,
you would have no hesitation in concluding that the joint distribution is

P12(r1,T2) = py(r1)pa(rs).



1.1 Two Particles

This also follows from taking the square modulus of Equation 1.1. The result implied by
the wavefunction Equation 1.2 is

p12(ry,13) = % [p1(r1)p2(r2) + p1(re)pa(ry)]

+ % [1(r1) @5 (1) P2 (ra) @] (rs) + 1 (re) @3 (re) s (1) (ry)] -

In particular, p;5(r,r) = 0 for fermions, and p,,(r,r) = 2p;(r)p,(r) for bosons. The
first result is natural from the standpoint of the exclusion principle, while the second is
perhaps more surprising. This shows that, because probabilities arise from the squares of
amplitudes, identical particles in quantum mechanics are never truly independent.

One dramatic illustration of this deviation from our classical intuition is provided by the
Hong—Ou—Mandel effect in quantum optics. In simplified terms, we imagine wavepackets
describing two photons (bosons) approaching a 50:50 beam splitter from either side.
Because of the unitarity of scattering, the two photons end up in orthogonal states. For
example,

Left) — \}5 ([Left) + [Right))
1
|Right) — — (|Left) — |Right))

5

2

@ Check

If we start in 1

E[SOL(I'QSOR(%) + pRr(r1)eL(rs)]

What state do we end up in?

2 O O

Figure 1.1: Four possible outcomes after the passage of two bosons through a beam
splitter.



https://en.wikipedia.org/wiki/Hong%E2%80%93Ou%E2%80%93Mandel_effect

1 Bosons and Fermions
1.2 Product States

The Hamiltonian of a system of V identical noninteracting particles is a sum of NV identical
single particle Hamiltonians, that is, with each term acting on a different particle
coordinate

n-3

N
=1

[— QV:L + V(ri)]

where m is the particle mass, and V(r) is a potential experienced by the particles.

Let’s denote the eigenstates of the single particle Hamiltonian by {¢, (r)} , and the
corresponding eigenenergies by {E,}, where « is a shorthand for whatever quantum
numbers are used to label the states.

A set of labels {«,} i = 1,2,... N tells us the state of each of the particles. Thus we can
write an eigenstate of N distinguishable particles with energy E = Zfi . E, as

Wayapmay) = Pay (F1) @0, (T2) - @q  (1N) (1.3)

(We will frequently switch between the wavefunction ¢(x) and bra-ket notation |p). In
the latter notation the product wavefunction in Equation 1.1 is written |¢;)|ps))

Such states are called product states. A general state will be expressed as a superposition
of product states: they are special states which provide a frequently convenient basis.

As we’ve just discussed, however, we should really be dealing with a totally symmetric or
totally antisymmetric wavefunction, depending on whether our identical particles are
bosons or fermions. The generalization of the two-particle states Equation 1.2 to many
particles involves summing over all permutations of particle coordinates r; with respect
to the state labels «;. To write these down we introduce the operators of symmetrization
and antisymmetrization

1 1
$= P, A= N > sgn(m)P, (1.4)

Here’s the definition of the various quantities in Equation 1.4:

e The sums are over all N! permutations m of N objects. One way to think of a
permutation 7 is as a one-to-one correspondence (or bijection) between the set
{1,2,... N} and itself, so that 1 is mapped to 7 (1), etc..

e P_ denotes the corresponding permutation operator

Pﬂ*\p(rla Tay ... rN) = \I](rﬂ(l)7r7r(2)’ I'71'(N))


https://en.wikipedia.org/wiki/Bijection

1.2 Product States

o sgn(m) is the signature of the permutation, equal to 41 for permutations involving
an even number of exchanges (transpositions), and —1 for an odd number. Note
that although the same permutation can be accomplished with many different sets
of transpositions, the number of transpositions is either always odd or always even.

Equation 1.4 allows us to write the totally symmetric and totally antisymmetric versions
of Equation 1.3 as

Y
"IjglaQ---aN> = WS @al(r1)90a2 (r2) "'<PaN(1'N)
ot S G, (02, () iy (F)
NN, & Pa, (F(1))Pay F(2)) 7 Pay (N (1.5)

’\I[A > = m"q@al(rlxoo%(lé)'“SDaN(rN)

oy
/1
=\Vw Z Sgn(ﬂ)s%l (r<1>)80a2 (r<2)) (paN(r(N))v

where the occupation numbers {N_} in the boson case give the number of particles
in state a. Note that it doesn’t matter if we permute coordinates or state labels «; in
Equation 1.5. Thus the symmetric product state can also be written

/ 1
|‘1’§1a2~-aN> = W Z @aﬁ<1)(r1)%0a,r(2) (rg) Pa (rn)-

These normalization factors yield normalized wavefunctions if the single particle state
|p,) are orthonormal (as the eigenstates of the single particle Hamiltonian are). In the
fermion case each NN, is either 0 or 1 so the prefactor simplifies. Since the order of the «
indices is irrelevant in the boson case, and amounts only to a sign in the fermion case,
states based on a given set of single particle states are more efficiently labeled by the
occupation numbers. In terms of these numbers the total energy is

@ Check

Verify that the normalization factors in Equation 1.5 are correct.

A more formal way of putting things is as follows. We first consider the space spanned by
states of the form Equation 1.3. Then we introduce the operators § and A, noting that
82 = 8 and A? = A. In other words, there’s no point symmetrizing or antisymmetrizing
more than once (we say that the operators are idempotent). Any eigenvalue of one of


https://en.wikipedia.org/wiki/Parity_of_a_permutation

1 Bosons and Fermions

these operators is therefore either one or zero. The states with § = 1 are the symmetric
states, and those with .4 = 1 are antisymmetric. You can easily convince yourself that if
a state has one of § or A equal to one, the other is zero. This defines symmetric and
antisymmetric subspaces, consisting of the admissible boson and fermion wavefunctions.

Note that the fermion wavefunction takes the form of a Slater determinant (though it
appears first in {% cite dirac1926 %}).

(pal(rl) (pa1<r2) (pa1<rN)
W) = gy T T (16)
Hoa () e o (EN)

The vanishing of a determinant when two rows or two columns are identical means that
the wavefunction is zero if two particle coordinates coincide (r; = r;), or if two particles
occupy the same state (a; = aj).



2 The 1D Fermi Gas

Let’s consider perhaps the simplest many particle system one can think of: noninteracting
particles on a ring. If the ring has circumference L, the single particle eigenstates are

1 :
Spn(x> - ﬁ exp (’Lk‘nl') )

2
with k,, = %T", n € Z. The corresponding energies are F, = 5—;

2.1 Ground State

Let’s find the N particle ground state. For bosons every particle is in the state |p,) with
zero energy: Ny = N. Thus

1
UG (21,25, . 7y) = N2

That was easy! The fermion case is harder.

Since the occupation of each level is at most one, the lowest energy is obtained by filling
each level with one particle, starting at the bottom. If we have an odd number of particles,
this means filling the levels with n = —(N —1)/2,—(N —3)/2,...,—1,0,1...(N —1)/2
(for an even number of particles we have to decide whether to put the last particle at
n = +£N/2). Introducing the complex variables

z; = exp(2miz,; /L),

the Slater determinant Equation 1.6 becomes

Zl—(N—l)/2 22—(N—1)/2 ZJ_\/(N_l)/2
e

Vg (@, on) =7 R £ (2.1)
AN e



2 The 1D Fermi Gas

Let’s evaluate this complicated looking expression in a simple case. With three particles
we have

21 Zy 23 % Zy %
@64(%1;3527%): 1 1 1 2*1—*2-1-*3—*1—1- 2— 3

_ 23 2'1 22 22 33

= z3

 sin ([L—f”) sin (L—fﬂ) sin (L—fﬂs)
The vanishing of the wavefunction when z; = z; is consistent with the Pauli principle.

You should check that additionally it is periodic and totally antisymmetric.

Equation 2.2 generalizes for any (odd) N so that the ground state Slater determinant
Equation 2.1 is proportional to

VA(2y, o2y ocHsm( i _%]). (2.2)

1<J

@ Check

Show this using the Vandermonde determinant

z z N
) s o |
52 2 —H<Zj—zz‘>
1<J
JN-1 N-1 .  N-1
1 2 N

which can be proved in a variety of ways. Proving directly that Equation 2.2 is
an eigenstate of the Hamiltonian is not easy, but can be accomplished using the
identity

cot(x — y) cot(y — z) + cot(y — z) cot(z — x) + cot(z — ) cot(z — y) = 1.

Check carefully that Equation 2.2 is periodic and totally antisymmetric.

Let’s take the opportunity to introduce some terminology. The wavevector of the last

fermion added is called the Fermi wavevector and denoted kp. In this case kp = %

Its energy Frp = % is the Fermi energy.

10



2.2 Density; Density Matrix; Pair Distribution
2.2 Density; Density Matrix; Pair Distribution

Having a many particle wave function is one thing, but what to do with it? Bear in mind
that Equation 2.2 is just about the simplest fermion state you can imagine, but it’s not
immediately clear what it is telling us.

|W(xq,...,7,)|? is the probability distribution of the positions of the particles. If we were
able to take a photograph of the positions of the particles at an instant in time, this
would correspond to taking a sample from the probability distribution. In terms of the
complex variables z;, it would look something like this:
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. .+ .. (b) Uniformly distributed points on the circle de-
(a) A sample from the probability distribution scribed by |WS (2, 2y, .. 2 )|2. The particle

Ui (2, 2f icles. o
5 (21w, 2n)[” for 50 particles positions are uncorrelated.

Figure 2.1: Distribution of particle positions for noninteracting fermion and boson ground

states.
Since |U(zy, ..., 7 y)|? is the probability distribution of the positions of the particles, we
can use it to find the marginal probability distributions for any subset of the particles.
Of course, since the particles are identical, it doesn’t matter which ones we choose, just
the number.

The one particle distribution is related to the average density of particles, given by

p(xy) = N/d:r2...da:N|\IJ(x1,:1:2,...,mN)|2. (2.3)

Note that although I use the symbol p, density is always going to be number density (not
the mass density).

@ Check

Can you explain why this is the density? Think about the simpler case of two
particles, with discrete locations. Why is the expected number of particles at

11



2 The 1D Fermi Gas

position =

N, =Y [P(z,y) + P(y,2)]?

What if we have more particles?

Normalization of the wavefunction then implies

/dazpl(x) =N.

In a translationally invariant system like the fermion gas on a ring we expect the average
density to be constant.

We can regard Equation 2.3 as an expectation of a density operator

pla) = 38w —x)), (2.4)

so that py (x) = (¥|p(2)|).

The single particle density matrix is a generalization of the expectation of the density,
and is defined as (we’ll see shortly why this is a useful quantity)

g(z,y) = N/de e dx N V(2 2y v, 2 N) U (Y, Ty e, T ). (2.5)

Note that g(x,z) = p;(x).

@ Check

Show that the average number of particles in a single particle state |¢) is

N, = / dzdy ¢*(x)g(z, y)¥(y). (2.6)

@ Check

Starting from the Slater determinant Equation 2.1 (i.e. not from the explicit form
Equation 2.2), show that g(z,y) for the ground state of the Fermi gas is

1 ; e dk sin [kp(z — y)]
g(z,y) = — etk(z—y) — / GR Jik(e—y) _ ,, SPUFRT — Y)]
L k%F P kp(z —y)

where n = %F is the average density.

12



2.2 Density; Density Matrix; Pair Distribution

@ Check

Find the average number of particles in a momentum state |k) using Equation 2.6

_ 1 |kl <k
N, = Ikl < ke (2.7)
0 |kl >kp

Note that in a translationally invariant system g(z,y) = g(z —y), and is the Fourier
transform of N,.

i Note

To understand the origin of the name single particle density matriz, recall that
the density matrix ¢ describes a mixed state of a quantum system, and is the
appropriate description when the quantum state is not known. p is a positive
definite hermitian operator satisfying tro = 1. Its spectral resolution

0= Zpa‘(pa><90a|?

can be thought of as a statistical mixture of different quantum states |p,) with
probabilities p,, .

One natural way in which density matrices arise from pure states is as follows. The
Hilbert space of a composite system consists of a tensor product of two or more
components H 45 = H 4 @ H 5. Starting from the density matrix corresponding to
a pure state, we can obtain a density matrix for the component A alone by ‘tracing
out’ the B subsystem.

o4 =trg|U)(¥|, [¥) € H yp.
The probability for system A to be in state [¢)) € H 4 is

Pqp = <¢‘Q|¢>~

Thus you can think of the single particle density matrix Equation 2.5 as arising
from tracing out N — 1 particles from an N-particle system.

We can also consider marginal probability distribution of a pair of particles, and
define the pair distribution function

po(r1,m9) = N(N —1) /d% weday “I’(3717$2,-~-;90N)’2~

The prefactor is to account for all pairs of particles.

13



2 The 1D Fermi Gas

@ Check

Starting from the Slater determinant Equation 2.1, show that

(1. 3) = 2 [1_ ( [k (2 _%)])2] |

kp(ry — x5)

This vanishes at z; = x4, consistent with the Pauli principle.

A natural question:
?
pa(21,25) = (P[p(zq)p(zy) V).

Almost. Looking back at Equation 2.4, we see that the product of two density operators
will contain terms involving the same particle, which are absent from p, (2, z5).

@ Check

Show that the correct relationship is

Pa(T1,25) = (W|p(x1)p(22) V) — py(21)0(71 — T5).

2.3 Impenetrable Bose Gas

There’s a bit more mileage in the 1D Fermi gas yet. Consider the following Hamiltonian

EI_Iint
PR Sl A
2m L~ 9z2 “ J k-
J J <k

The second term represents an interaction between pairs of particles. Of course, this
model is rather special, as (1) it’s 1D and (2) the interaction potential is a J-function.
Nevertheless, it represents a huge step up in difficulty from the noninteracting examples
we’ve discussed so far. At least, it does for bosons. For fermions, the wavefunctions
vanish at coincident points, and so the interaction has no effect at all!

For bosons, it happens that the Hamiltonian can still be solved exactly. For now, however,
we’ll concern ourselves only with the limit of infinite interaction: ¢ — oo, sometimes
called the impenetrable limit. In this case, the eigenenergies coincide with those of
the free fermion problem, and the eigenstates are just the modulus of the corresponding
fermion eigenstate.

@ Check

Why?

14



2.3 Impenetrable Bose Gas

Just like that, we’ve solved our first interacting many body system (and with infinite
coupling, no less)!

Thus the ground state on the ring has the form

()|

It’s not hard to see why this works. For a state to have a finite energy, the wavefunction
must vanish whenever two coordinates coincide. This is because the interation energy
has the expectation value

N

Uo(xy, ..., zy) = H

i<j

<\II‘H1nt|‘1}> = CN(Ni 1) /dxl "'de—l |\IJ(SU1,CL‘1,£L‘2, 7‘,EN|2

But we already have a complete set of eigenstates that obey this condition, namely the
free fermion Slater determinants. It remains to make them symmetric functions by taking
the modulus.

This mapping is quite powerful, and allows us to calculate any observable of the im-
penetrable Bose gas in terms of free fermions as long as that observable is insensitive
to taking the modulus of the wavefunction. Thus the average density p,(z) and pair
distribution p,(x,x,) of the previous section can be found in this way, but the single
particle density matrix g(x,y) cannot.

@ Check

Show this explicitly.

This means that the momentum distribution is not given by Equation 2.7. Finding
g(x,y) for the impenetrable Bose gas is in fact really hard. We’ll see in a later lecture
how to obtain some of its important features.

Baym, Gordon. 2018. Lectures on Quantum Mechanics. CRC Press.
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