Lattice Models






Models defined on discrete sites — so-called tight binding models — provide a
conceptually simple way to think about the effects of strong interactions between particles.
The phenomenology of these models is central to many current avenues of research in
condensed matter, whether in solid state or atomic physics.







1 Tight Binding Models

A typical many body Hamiltonian consists of kinetic energy and interaction terms. We
haven’t yet had much to say about the situation where the particles additionally feel a
potential that could arise from the crystal lattice, or impurity atoms, or both. In this
lecture we will be concerned with systems in periodic potentials, so that the noninteracting
part of the Hamiltonian is (taking the 1D case for simplicity)

H =

N
Jj=1

om0+ V)| = [ [ 0100 + Viewiv] do

with V(z +a) = V(z). As you know, Bloch’s theorem tells us that the eigenstates are
labelled by a continuous index k (crystal momentum) and discrete index n (band
index) and have the form

V(@) = Moy (2), (1.1)

)

where ¢, ,, is periodic. k lies in the Brillouin zone (—m/a,7/a]. The eigenvalues E,, (k)
give the energy bands.

We are going to be concerned with the case where the lattice potential is very strong, so
that the wavefunctions — at least in the lowest bands that we assume are those occupied
— are highly localized. The wavefunctions become very small between the minima of the
potential. We will see that in this limit we can introduce operators a;, a; describing
particles in these localized states, and that the coupling between neighbouring sites can
be captured by the tight binding Hamiltonian

H, = —tz [a;r.ajH + a;r.Haj , (1.2)
J

which will play the role of kinetic energy in our models. In fact, we’ve already met such
a description, when we described a magnon propagating in a spin chain in Lecture 4.
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1 Tight Binding Models

1.1 Physical Motivation

This subsection is to shed some light on the origin of Equation 1.2. Feel free to jump to
the conclusion.

Let’s think about the form of the Bloch states in a deep 1D lattice in more detail. You
know that in a stationary state, the current j(x) is conserved

J=—5-[47(0,4) — (9,47)]. (1.3)

2m

Representing () = \/p(x)e??®) | this can be written

The Bloch states at non-zero k carry a current. As we’ve said, away from the minima of
the lattice potential, the amplitude of the wavefunction is very small. Thus if j is constant,
0,0 must be large. Essentially all of the change in the phase of the wavefunction happens
in these regions. Where the wavefunction is larger, its phase is barely changing.

To describe this situation more quantitatively, we use the WKB approximation, which
consists in writing the wavefunction in the form

Z‘(x) exp (z / ’ k(x/)dx/> + f@ exp (—i / ’ k(m’)dx’) ,

where k(z) = \/2m(E — V(x)). In fact, we want to describe the part of the wavefunction
with real exponents, where k(z) = ix(x) because V(x) > E. Substitution into the current
Equation 1.3 gives

Ywies(T) =

Jj= iImoz*ﬂ. (1.4)



1.1 Physical Motivation

Figure 1.1: The Bloch states in the WKB picture.

« is the amplitude of the wavefunction in the well on the left, and S is the amplitude on
the right. By periodicity of the Bloch state, it is only their phase that differs. Call this
phase change 6. In terms of the Bloch states Equation 1.1 § = ka. Then Equation 1.4
says

j=——siné. (1.5)

Now the Bloch function ¢, (x) satisfies the Schrédinger equation (we drop the band
index)

_% (0, +ik)* + V(2)| ¢p(2) = Eppr(z),

where a vector potential has arisen from the phase factor e’**. By considering a small
change Ak as a perturbation we can find
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Together with Equation 1.5 we conclude that the band has the form



1 Tight Binding Models

E(k)— E(0) = 2t[1 — cos ka],
with some characteristic energy t. Thus we have found

1. The Bloch states look like a superposition of localized states, with the phase
changing abruptly between sites.

2. The lowest band is sinusoidal.

@ Check

Confirm that both these features are captured by the tight binding model Equa-
tion 1.2.




2 Bose Hubbard Model

The simplest interacting tight binding model that we can write down is the celebrated
Hubbard model.

H=H,+Hy=—tY |ala, +ala)]+ gZNj(Nj —1),
G j

where N, = a;aj is the number operator for site j, and the sum in the first term is over
all nearest neighbour pairs on some lattice (e.g. square or cubic). The on-site interaction
term N]-(Nj — 1) is just what we have been writing as ajaja;a; previously. In 1D, you
can think of this as the lattice version of the Lieb—Liniger model, in that in involves a
kinetic term (sometimes called the hopping term) and a short-ranged interaction.

The Hubbard model was first introduced to describe electrons in solids. In that case the
particles are fermions, and we have to deal with their spin. We’ll come to this Fermi
Hubbard model shortly. In this section we are going to discuss the more straightforward
Bose Hubbard model introduced in {% cite Fisher:1989aa %}. These authors had in
mind applications to liquid He* on a substrate or granular superconductors in which the
Cooper pairs (more on those later) approximate interacting bosons. However, ten years
after its invention, the model found its natural home in the description of bosonic atoms
confined to optical lattices.

2.1 The Mott State

In analyzing a new model we always begin by asking what happens when each of the
terms in the Hamiltonian dominate the others. This allows us to get the lie of the land,
and think about how these different limits may fit together.

For the Bose-Hubbard model, we start by taking U/t — oo The eigenstates are then
states of definite occupation number, with energy

E(N) = gZNj(Nj —1).

To find the ground state at fixed particle number, we should try filling the N, sites as

sites

uniformly as possible. This is easy if the filling v = N, 4icles/ Nyites 15 integer. Otherwise,



2 Bose Hubbard Model

denote by |v] the largest integer less than v, and [v] the smallest integer larger than
v. Then the number of sites with occupancy [v] is Ny (¥ — |v]). The ground state
energy has a piecewise linear dependence on v

where e(N) = YN(N —1). As the result the chemical potential y = Mﬂ is piecewise
constant, with jumps occurring when v is integer:

particles

Figure 2.1: Energy and chemical potential vs. filling v.

If we think about varying the chemical potential instead, all values between UN and
U(N — 1) correspond to integer filling v = N. The states of integer filling are named
Mott states, after Nevill Mott. Mott’s realization was that when interactions dominate
the hopping, the formation of such states can cause insulating behaviour, even when
band theory implies a system should be a metal.

2.2 The Effect of Hopping

For these states to be physically significant, they must survive when we turn H, back on.
If the hopping is small, we can think of it as a perturbation. The unperturbed eigenstates
of the model have a fixed occupation NN, on site j


https://en.wikipedia.org/wiki/Nevill_Francis_Mott

2.2 The Effect of Hopping

|N> = ®‘Nj>j'

Applying H, to such a state gives a superposition of states, each with one particle moved
from one site to an adjacent site.

@ Check

How is a Mott state (all sites with the same occupation) changed by H, in first
order perturbation theory?

Let’s now consider a Mott state of filling v = N with one extra particle added. We now

have N, degenerate ground states when ¢ = 0, corresponding to placing the extra

particle on each lattice site. H, mixes these states together: we have a problem of
degenerate perturbation theory. All other states are separated from these lowest states
by energies of order U.

The states in the ground state multiplet are
al

i,+) = —— N) ..

i) = g QI

Evidently, only states corresponding to adjacent j are coupled by H,. These matrix
elements are

(7| Hylk) = —t(N +1).

Thus within the ground state multiplet H, corresponds to a tight binding model
Hyl, =—t(N+1))_[lj, +){k+| +hel. (2.1)
(3 k)

This is a very simple picture: the only many body effect is the factor of IV due to Bose
statistics. The splitting of the degenerate states by H, is then given by the tight binding
dispersion

d
wy(n) =—=2t(N +1) Zcos Ny, (2.2)

n=1

(in d-dimensions). We could alternatively remove a particle from the Mott state
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i, =) = \/%,@WM

J

Within these states, H, takes the form
(1K)

with a spectrum

d
w_(n) = —2tNZcos My
n=1

Let’s see how these considerations change the picture of the previous subsection. We
introduce the grand canonical Hamiltonian

%,u =H— /J’Nparticlem
and consider the ground state as a function of u. At ¢t = 0 the energies of the Mott states
with filling v = N are

&N U
= —N(N —1)— uN.
~ ( ) — K

sites

é’LN) and é’LNH) become degenerate when = UN for ¢t = 0. Let’s compare this with the
ground state with one extra particle on top of the N Mott state. This state corresponds
to a particle at the bottom of the tight binding band. From Equation 2.2, we see that
the ground state energy of the tight binding model is —2td(N + 1). Together with extra
energy of interaction we have overall

EN L UN — p—2dt(N +1).

We see that for ¢t > % the state with an extra particle actually has a lower energy:
the Mott state is not the ground state. Similarly, the energy of the ground state with

one ‘hole’ in the N + 1 Mott state is

ENTY _UN 4 p—2dt(N +1).

p—UN

Introducing a hole is thus favoured for ¢ > 2N
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2.2 The Effect of Hopping

Figure 2.2: Comparing the energies of the Mott states with single particle or hole states.
At t = 0 the red line is the absolute ground state. For nonzero ¢ the dashed
blue line corresponds to non-integer filling.

This analysis applies only at small ¢/U. What happens in the regions where the Mott
states are not the ground states, and there are excess bosonic particles or holes that are
free to move? If we let /U — oo we have a Bose condensate: all the particles can sit
in the 7 = 0 Bloch state. When interactions are finite but small, we will see in the next
lecture that the result is a superfluid. The boundaries that we have have found can be
connected (drawing freehand — see Problem Set 2 for a variational approach) to give the
following phase diagram for the ground state of the Bose-Hubbard model.

Mstt 2

2+ Cuprpuid

Metk 2

—Mﬁi
0 = £,

Figure 2.3: Ground state phase diagram of the Bose-Hubbard model.

11


%5Bref%20%5B%5D%7B.quarto-shortcode__-param%20data-is-shortcode=%221%22%20data-value=%22problem-set-2#mean-field-for-bosehubbard%22%20data-raw=%22%22problem-set-2

2 Bose Hubbard Model

Note the diminishing size of the Mott lobes, a consequence of the enhanced hopping
in the effective tight binding models Equation 2.1 and Equation 2.3 as we go to higher
filling.

Figure 2.4: With a trap potential as well as a lattice, moving radially outwards corresponds
to moving down a vertical slice through the phase diagram, producing this
distinctive ‘wedding cake’ structure. Successive Mott states are separated by
superfluid regions. Source: Cheng Chin, University of Chicago.
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3 Fermi Hubbard Model

Now we turn to the case of fermions, the context in which the Hubbard model was
originally introduced. Allowing for spin, the model is usually written.

H=-t Z [a;‘sakjs + a;g’sajjs] + UZNTNL’

(7 k) J

s=1,)
We could of course add spin to the Bose Hubbard model, but it’s still interesting without
it. By contrast, we need spin here to have an interacting model. It’s hard to overstate
the importance of this model in condensed matter physics because of the role that it
has played in attempts to understand the high-temperature superconducting materials
known as cuprates. The 2D model has long been argued to capture the physics of strong
correlations in the CuQO, layers that form the backbone of these materials. ‘Capture the
physics’ would ideally mean that the ground state of the model is superconducting. This
is still a controversial issue: some believe that the Hubbard model suffices, if only we
could learn enough about its behaviour; others that it is missing some ingredient — other
bands, coupling between layers, phonons — that is vital to superconductivity.

Relatively little is known for sure about the Hubbard model, except in 1D, where it can
be solved exactly using the Bethe ansatz. You may be wondering why it’s so much harder
than the Bose case. Let’s find out...

3.1 Two Sites, Two Fermions

As in the Bose case, we start by thinking about U/t — oo. In the limit we get Mott
states: only three this time, corresponding to 0, 1, or 2 particles per site. Two particles
on a site are described by a}sa;s,|VAC>, which is antisymmetric in the spin indices
due to anticommutation of the creation operators, and therefore describes a spin singlet
% (I — 14)I1)]- When we have only 1 per site (We call this half filling), we can have
either spin. Thus the v = 1 Mott state is massively degenerate, with a ground state
multiplet consisting of 2/Vsites possible spin configurations. U/t — oo is therefore a rather
singular limit, and to understand the true ground state at large U we’ll need to work bit
harder.

Start by thinking about two sites and two particles. There are 6 states altogether in the
Hilbert space.

13



3 Fermi Hubbard Model

af ;al | IVAC), af ,a} IVAC)
aJ{,sa;s’ |VAC>7 S, s’ =M1

The top two states have energy U when ¢ = 0; the bottom 4 have energy 0.

@ Check

How does the degeneracy of these states get lifted at finite t7 Try writing down the
Hamiltonian restricted to these states.

Solution

The first thing to note is that the Hamiltonian H, has no effect on
the states alTa;T]VAC) and aha;iWAC), because it is not possible to
move two fermions with the same spin to the same site. Thus we need
to consider only the four states

H, connects |1) and |2) with |3) and |[4). We compute the matrix
elements

(1H,|3) = (VACla, |a, ,H,a} .a} |VAC)
= *t<VAC|a1,¢a1,¢a1,¢“2,¢a1ﬁa;,i|VAC>

=t
(2|H,|3) = (VACla, a,  H,al ;al | |VAC)

= —t(VAC|a2,la2ﬁa;¢a1naha;l|VAC>
—t
(11H,|4) = (VACla, ,a, ,H,al ja} [VAC)

= —t(VAC]al7ia17TaLTa27Taha;T]VAC)

=t

(2|H,|4) = (VACla, a,  H,al ja} [VAC)
= —t(VAC]az,lama;ialJaha;n]VAC)
=t
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3.2 Effective Hamiltonian

This gives the Hamiltonian

O O + o+
)

Note that the off-diagonal block

;)

only connects the states % (1) +12)) and % (|3) —14)), and we arrive

at the 2 x 2 matrix
U 2t
2t 0

with eigenvalues U/2 4+ \/U?/4 + 4t2. Expanding for small t/U gives
U+ 22 and —42/U.

Note that the state % (|3) 4 |4)) is a spin-triplet, which is why its energy

is unaffected, like the states a;Ta;T]VAC) and ai lag LIVAC) that we
discarded initially. The effect of finite ¢ is therefore to lower the energy
of the singlet state by 4t2/U relative to the triplet state.

3.2 Effective Hamiltonian

As the number of sites increases, it becomes harder to say what happens to the ground
state multiplet. We now modify our strategy by splitting the problem in two: we are
going to find an effective Hamiltonian that acts only on the half filled Mott states and
describes their splitting when ¢/U is finite but small. Whether we can subsequently solve
that Hamiltonian we leave until later.

As I'm sure you realized when you thought about two sites, this is a qualitatively different
degenerate perturbation problem than the one we solved when we added a single particle
or hole to the bosonic Mott states. The reason is that H, has no matrix elements among
the degenerate states: when acting on one of them it always takes us into a state with
one site doubly occupied and the neighouring site empty. We have to think about second
order degenerate perturbation theory to find out what happens. To handle this we divide
the Hamiltonian into block form, according to whether its matrix elements act on the
Mott state or not.
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3 Fermi Hubbard Model

H |4
H = Mott )
( VT HNot

Denoting by P, the projection operator on to the 2Nsites Mott states, and Py, =
1 — Pyjort, we have

Hytors = Patost H Patotts Hnot = ProtH Prot
V= PMottHPNota V= PNotHPMott'

In the case of the Hubbard model, we have

HMott = PMottHUPMottn HNot = PNotHPNot
V= PMotthPNot7 V= PNothPMott'

Note that both H; and H, contribute to Hy,, because H, can move particles and holes
around in a non-Mott state. We write the eigenvalue equation in block form

(B V) (19) =5 (1)
Vi Hy, ) \|®) )
We eliminate |®) to obtain

[Hytory =V (Hyor — E) VI [9) = E|).

So far we have made no approximation. While this looks like an eigenvalue equation,
we can’t yet interpret the operator in the square brackets as an effective Hamiltonian
because it depends on the eigenvalue E. However, we now focus on energies much smaller
than the eigenvalues of Hyy,, which are O(U). In this way we can neglect this energy
dependence and arrive at the effective Hamiltonian acting only on the Mott state

Hep = Hyjo, — VHyo VT
What form does H g4 take? Hyy, = 0, and VT creates states with an adjacent hole and
doublon (doubly occupied site). Hy,, acting on these states is just U, and V has to
remove the hole and doublon. Thus,

t* P :
u U Gr (10 5 5 ]
J

5,8
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3.3 Doping

We can write this in a more familiar way by first reordering the operators (not forgetting
the anticommutation relations!)

T

T _ T
aj,sak,sak,s’aj,s’ =—a

T T ;
G505 Qg Qg s + Og @ O jFk

7,877,8"

and then using the identity

1
Oaplcq = B [0ad* Tep + Gaades] -
Finally, in d dimensions (d = 1, chain; d = 2 square lattice; d = 3 cubic lattice) we get

dN
Heﬁ' _ 51tes + J Z S.
(5 k)

with J = and

1 Sl
= 5 / aj7sass/ajys/.
s,8

The effective Hamiltonian is nothing but the spin-1/2 antiferromagnetic Heisenberg
model!

@ Check

Note that there is something slightly sly about this derivation. We assumed that
the energy scale U was the largest scale in the problem, in order to arrive at the
effective Hamiltonian. However typical excited state energies of the Heisenberg
sites = (%)2 there isn’t actually a separation
between these two energles Not a very useful condition! Physically, it’s enough to
have a small density n of doublons and holes, with overall energy ~ nU, when t/U
is small.

. . N,
Hamiltonian are % Thus for N

3.3 Doping

Antiferromagnetism and the Mott phenomenon are seen to go hand in hand in fermion
systems. This explains the common ocurrence of antiferromagnetism in transition metal
compounds, especially oxides. The cuprate superconductors mentioned earlier are a
famous example.
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electron doped hole doped
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Figure 3.1: Schematic temperature vs. doping diagram for the cuprate materials [Source].

At half filling, the cuprates are antiferromangetic Mott insulators. Superconductivity
emerges when the materials are doped by changing their stoichiometry. This introduces
electrons or holes into the CuO, planes that are modeled by the Hubbard Hamiltonian.
Antiferromagnetic order is believed to be destroyed by freely moving holes — think
how the Néel ordering is disrupted — and indeed superconductivity appears where
antiferromagnetism dies. The precise relationship between the two phenomena is — like
much of the physics of the cuprates — not clear.

An effective Hamiltonian that describes the doped Mott insulator is the t-J model

N_.N,
— T T 'k
Hg=—t E [aj’Sak’S + ak,s%,s] +J E |:Sj -8 — 4} . (3.1)
<i’$>¢ (3,k)

The model is defined by supplementing the Hamiltonian with the constraint that there
are no doubly occupied sites. That is, we ignore such states in the Hilbert space. This
could be achieved by applying the projector Hj(l — N;+N; ). The term involving N; N,
keeps track of the need for both sites to be occupied in the derivation of the effective
coupling (c.f. it’s just the “constant” term in Equation 3.1. The hopping term means
that holes or doubly occupied sites can move through the lattice, with the Heisenberg
exchange term only acting between sites with one particle, since the operators s; vanish
when they act on an empty or doubly occupied site.

18


https://en.wikipedia.org/wiki/High-temperature_superconductivity#Cuprates
https://en.wikipedia.org/wiki/T-J_model

	Tight Binding Models
	Physical Motivation

	Bose Hubbard Model
	The Mott State
	The Effect of Hopping

	Fermi Hubbard Model
	Two Sites, Two Fermions
	Effective Hamiltonian
	Doping


