Fermi Gas






A Fermi gas with weak interactions provides an example of one of the ‘standard models’
of condensed matter physics: Landau’s Fermi liquid theory.

Reading: Landau et al. (1980)







1 Weakly Interacting Fermi Gas

We are going to study the following simple model of a Fermi gas with short-ranged
interactions

1
H= /dr [Z:ﬂle Vs + Ugtplp] o 0, | -

As with the Bose gas, it’s most convenient to work in momentum space
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with e(k) = k?/2m, and V the volume. At U, = 0 the eigenstates are of course the product
states of single particle momentum states specified by the occupancies N, (k) = 0,1. The
ground state is the Fermi sphere of radius kp in momentum space with N, (k) = 0(kp— k).
Low energy excited states will have N (k) =1 for |k| < kp and N, (k) = 0 for |k| > kp.
In perturbation theory we may still label the eigenstates by these occupation numbers
even though the eigenstates are no longer occupation number eigenstates. Instead, we
say that these labels give the occupation numbers of quasiparticles with fermionic
statistics. The energy of the eigenstates can then be expressed in terms of the quasiparticle
distribution.

Without interactions the energy of a state |N) is

k,s

In the presence of interactions this function is no longer linear in the occupation numbers.
The second order expansion of the energy in terms of the deviation of the occupancies
from the ground state values is the key ingredient of Landau’s theory.






2 Perturbation Theory to Second Order

The standard expressions for the perturbed energy to second order in the perturbation
are of course

EU(N) = (N|H,,,|N)

(N[ H,,, [N (2.1)
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E2) (N) =
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The first order correction is easily found to be

U .U
EVD(N) = 70 § N (k)N (k') = 70NTN¢.
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This is just the energy we found when we discussed the Stoner criterion in Lecture 6. For
the second order correction we need the matrix element (N’|H,,|IN), which is nonzero
if

Nl(k?)) - N¢<k3) — 1, N{(kz;) - N¢<k4) -1,

for k; satisfying k; + ky = k3 + k,. In this case
’ UO
<N ‘Hint|N> = 7 (1 - NT(kl)) <1 - Nl(kz)) Nl(k3)NT(k4),

(ignoring any coinciding momenta) where the occupancies are either zero or one. In this
way we end up with the second order correction

E(2>(N) = <U0)2 (1 — NT(kl)) (1 — Ni(k2)> Ni(ks)Nw<k4>.

() + e(ley) — (k) — elky) 22)
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2 Perturbation Theory to Second Order

2.1 Landau f function

Evaluating Equation 2.2, even for the ground state, is a bit arduous on account of the
three independent momentum sums. Fortunately, we are more interested in how the
excitation energies are affected by interactions. This means we focus on the change in
the occupation relative to the ground state, denoted by n (k) and defined through

Ny(k) = 0(kp — [Kk|) +ny(k)

This might seem a bit odd given that N, (k) = 4+1. You should think of this expansion
in terms of the continuum limit, where the k values become finely spaced. In this limit
ny represents the mean deviation from the Fermi sphere in that region of k-space.

N
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Figure 2.1: n, as a smoothed deviation from the Fermi step.

The excitation energy above the ground state of an eigenstate labelled by occupancies
Ny can then be expanded in ny

AE=) e (kn,(k) + = Y (kK )0 ()ng (k). (2.3)
k,s

Note that f,. (k,k’) is symmetric under exchange of k and k’, and s and s’. This
expansion is the key idea in the theory of the Fermi liquid. Although we will calculate the
quasiparticle energy £,(k) and interaction function f, . (k,k’) using perturbation theory,
Landau’s idea was that any interacting Fermi system could be described in similar terms,
as long as the ground state does not change abruptly as we increase the interaction from
zero (normally a thought experiment!). An example of an abrupt change would be a
transition from liquid to solid (crystallization).



2.1 Landau f function

To first order in the interaction we have the not-so-interesting result

UyNg
.00 = el + 0N .
fn=fn=U+ fy=fy=0+",

where the meaning of the § is T =], | =f. The second order contributions to the
f-function are more interesting, however. For example

N Us N, (k3)(1— N, (k;))
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We will be interested in the low temperature limit, in which n4(k) is non-zero only in a
very narrow region of size kpT around the Fermi surface. In this limit we can take the
k| = |k’| = kp, so that

faloid) =~ 20 Nl)(1=Ng) - g~ N<k3><1—N<k2>>]

ktks=k’+k, 6(1{3) - 6(k2) K’ +ky=k+k, 6(k3) - €<k2)

In which we have assumed the state around which we expand is unpolarized, i.e. N, (k)
is independent of s. In this case fi+(k, k") = fi;(k, k')

The expression for f; (k, k") = f|;(k, k") is more complicated

N n o U N(ks) N (ky)
fu(k,k ) =Uy + fTT(kvk )+ % e ;) + e(ky) — 2Fy
(1 - N(k,))(1 = N(ky))
k+k’ =k, +k, 2EF - e(kl) - 6(1{2)

Evaluating these expressions is simpler than calculating Equation 2.2, as we have only
one independent momentum. The new feature that comes at second order is a nontrivial
dependence of f,. (k,k’) on the angle between k and k’.

It’s a bit fiddly to get at, but let’s work it out for the simpler case of fi;(k,k’)!. The
continuum limit is



2 Perturbation Theory to Second Order

Ug
(27)?
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So we need to find the integral

dk,
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Note that the denominator can be written

(k) — elky) = 5 (s k) - (ky —y) = 5 (I + ) - (k= K),

where k — k' is fixed. Writing

K= (k2+k3)7 q=

DN | =

Figure 2.2: Geometry of the integral for f(k, k).

the denominator becomes



2.1 Landau f function

clley) — k) = —K g,

for fixed q. Thus, only the angle # between K and q enters the integral. The conditions
|ky| > kp and |kg| < kp become

(K+q)® >k, (K—q) <k,

which gives the range of K_(0) < |K| < K, (6)

K_(0) = £q|cos 0] + \/ k& — g% sin? 0,

and we must have 6 < 7/2. In terms of these variables the integral becomes

dk,

/2
— = 7Tm do
A3|<kalk2|>kF €<k2> - E(kS) /0
ktky =k +k,

K+(9) K" 0
/ sin dK

K (9) 4C08 0
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0

The other integral in Equation 2.4 is the same but in the interval (7/2, 7). Thus we have
Finally

2 ™
ik k) = (U2(7]:)r; / dfsin 0/ k% — g% sin® 0
0
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Here ¢ is the angle between k and k’ i.e. |k —K’'| = 2¢ = 2kpsin¢/2. We won’t go
through the calculation of f; (k,k’), but just record the final answer.

Before doing that, let us first write the quadratic contribution to Equation 2.3 in an
alternative way that allows us to generalize to a fully rotationally invariant formulation
(see the Appendix)

LS (F() [y () + 0, ()] [y (k) -+, ()]
ok (2.4)

2Vu(Ey)
+G(¢) [ny(k) —n (k)] [n,(K') —ny(K)]).

Here we have defined



2 Perturbation Theory to Second Order

P(6) = "T (£ 0000) + £, 0610 .
G(6) = "2 (£ 1) — £, )]

F(¢) and G(¢) have been made dimensionless by scaling by the density of states per
unit volume at the Fermi surface v(Eg) = kpm/72.

The explicit form of the functions F(¢) and G(¢) is (see Landau et al. (1980))

v
F(¢) = B 2 2sin ¢ /2 Ogl—Sin¢/2

6161 = B0 (1 X500 [ L g LE002] Y]

(]EF)(]O[<1+1/(EF)UO [2+ coso | 1+sin¢/zm
(2.6)

The message to take away from this calculation is not the detailed functional form
of Equation 2.6, but the fact that the interaction between quasiparticles in an
interacting Fermi gas is defined in terms of a pair of functions F(¢) and G(¢)

2.2 Quasiparticle energy ¢, (k)

So far we haven’t had much to say about the quasiparticle energy (k) introduced in
Equation 2.3. Evaluating the second order correction is going to be difficult, as it will
involve two momentum integrations instead of one. What can we say on general grounds?
We expect that

es(k) — Bp = vp(|k| — kp). (2.7)

The Fermi velocity vy defined by this expression may be altered by the interactions,
allowing us to define an effective mass

kp

(2.8)
Up

m, =

Fortunately, we can get at this quantity using the results we already have, thanks to
the following sneaky trick (due to Landau). If we increment the momentum of each
quasiparticle by a small amount dk, we can compute the new energy using our energy
functional Equation 2.3, along with a new distribution function

10



2.2 Quasiparticle energy (k)

Figure 2.3: Shifting the Fermi sea to increase the momentum.

N, (k — 0k) = 0(kp— |k — 6k|) + n,(k — k) + -
= 0(kp— K|) + ny (k) + 0(kp— [k|)k - 6k — 0kVyn (k) + -

Treating the last three terms as n (k), our excitation energy changes to first order in dk
by an amount

AE =Y n,(k)dk - Vye, (k)

k,s
! / N\ ,
+ Vkszk;s, fss/(k;k )ns(k> [5(kF— ‘k |>k . (sk— vk/ns/ (k ) . 6k] .

(In the first term I have integrated by parts.) On grounds of Galilean invariance, however,
we also know that this is

AFE =

P
— -0k 2.
— ok, (29)

where the total momentum P can be written

P => kn,k).
k,s

If Equation 2.9 holds for all n (k) and ¢k, we have (ignoring second order in ng4(k))
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2 Perturbation Theory to Second Order

k dk’
% = vk€s<k> + Z/fss’(kv k/ ‘k/‘) (271')3'

Restricting ourselves to momenta close to the Fermi surface, and using our definitions
Equation 2.5, Equation 2.7 and Equation 2.8 gives the relation

dQ/
k 7+ / e
m, m

If we write k” = cos ¢k + sin ¢k |, with k| - k = 0, this gives Landau’s famous result

1
— 7_’_ /F ) cos ¢
m m

*

sin qbd(;S

For the F(¢) that we found in Equation 2.6 from second order perturbation theory, this
gives the effective mass correction

3

e 1 (Tlog2 — 1) (mUpks)* +
(Use the substitution u = sin ¢/2 to do the integral.) Again, the point is not the value that
we’ve obtained, but the argument we used to do so. In systems with strong interactions
it’s possible for the effective mass to be very different from the bare mass: in the heavy
fermion materials m, /m can approach 1000! Despite being so far from the noninteracting
limit, Landau’s picture of fermionic quasiparticles still applies.

12
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3 Eigenstates in Perturbation Theory: What
is a Quasiparticle?

So far we’ve focused on the energies of the excited states of the gas. But what do these
quasiparticle states look like? In perturbation theory at least, we can see fairly explicitly.
At first order we have

(N[ H,p [N)

INDY = Z ;
Gty EO(N) — EO/(N)

IN').

Let’s consider the Fermi sea ground state |[F'S). What states can appear in the above
sum in this case? The only possibility is that the interaction creates two particle-hole
pairs out of the Fermi sea, with total momentum zero.

Figure 3.1: Two particle-hole pairs created out of the Fermi sea.

|0) = |F'S) + two particle-hole pair states + -

What about an excited state? Consider the state

af |IFS),
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3 FEigenstates in Perturbation Theory: What is a Quasiparticle?

having momentum k and spin s. When the interactions are switched on, this state will be
modified to a state we’ll denote |k, s). At first order, two kinds of states can contribute
to the modifed state:

1. States with a pair of particle-hole pairs, as before, but with the extra particle at k.
The coefficients of these states are the same as for the corresponding states in the
correction for |0), as you should check.

2. States with a single particle-hole pair and with the extra particle moved from k to

another momentum.
k,S \

Figure 3.2: Particle scatters, creating a particle-hole pair.

Let’s compare |k, s) with alT( .|0), the state obtained by creating a particle in the exact
ground state of the problem. In first order perturbation theory, |0) includes the first
kind of state above (2 particle-hole pair states). The states only differ because of the
contribution of the second kind. To first order, the single quasiparticle state is therefore

y4
k,s)= | —F——al |0)
(Olay jaf ,J0)

+ % all,sal];,s’a’ks,s/ ’FS)
Vv k,+k,=k,+k 6<k1> + €<k2) - €(k3) - 6(k)’

S

where ,/z;, is a normalization factor. As we go to successively higher orders of perturbation
theory, the quasiparticle state is ‘dressed’ with more particle-hole pairs. The quasiparticle

14



retains the conserved quantum numbers (momentum and spin in this case) of the fermions
of the noninteracting theory.

Normalizing Equation 3.1 gives

U, 1
o= 1— (7> el (3)
4 k1+k22—k3+k le(k,y) + e(ky) — e(ky) — e(k))?
‘k3|<kFu|k;‘:‘k1|>kF

This quantity can be interpreted in terms of the overlap of the single quasiparticle state
|k, s) with al 1]0).

|k, slaf |0}
(Olay jaf, ,|0)

A finite overlap — evaluated for quasiparticles at the Fermi surface — is a requirement for
the Fermi liquid picture to hold. If it were to vanish, any resemblance of the quasiparticle
to a free fermion would disappear with it!

Obviously evaluating the integrals in Equation 3.1 is a challenge involving a double
integral over momentum, but I have it on good authority (see Abrikosov, Gorkov, and
Dzyaloshinski (2012), though they don’t give the details) that the answer is

(mUkg)? [ 1]
|k =k {d 0g2+ 3

This is also the occupation number of the original fermions <0\a;r( <0y 5|0) (not the
quasiparticles!) just below the Fermi surface in the ground state (Sée Problem Set 3.
There is a corresponding result just above. Even with interactions, there is a finite step
in the distribution function at the Fermi surface.

N ()

A \
\ll/.m N0 ¥ -0

Vv

Figure 3.3: Discontinutity in the ground state occupation number.
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4 Collisions

The picture we have developed so far of eigenstates labelled by quasiparticle occupations
is actually a bit of an oversimplification. When we apply the second order perturbation
theory formula Equation 2.1 we have to omit degenerate states. It isn’t really enough to
insist that the occupancies differ N # N, because many states with different occupancies
have the same energy in the thermodynamic limit. From a time-dependent point of view,
the interaction can cause transitions between these states, leading to the quasiparticle
distribution changing over time. The rate of these transitions can be described by the
Fermi golden rule.

I = 20 [(NY | Hy [N)PO(E(N) — E(N))

By considering the volume of phase space available for the scattering of a quasiparticle
of energy A above the Fermi surface, you should be able to argue that the total rate,
obtained by integrating over all possible final states, varies like A?. This means that
at low energy (or temperature) such scattering is ineffective and the Landau picture
holds.

A —

—>0
S >
e o E

<A
TZNS‘L v ety % el
Ee -5 Ee

Figure 4.1: Vanishing phase space volume at low energies.
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5 Appendix

5.1 Rotationally invariant formulation

The definition Equation 2.3 implied a certain quantization axis for spin. To write things
in an invariant way, we should think of the occupation number N(k) as a 2 x 2 matrix
that can describe an arbitrary spin orientation, with elements

_ (Ny(k)  Nyy(k)
v = (31~ )

The f-function then has four spin indices

1 / /
27 Z f8152,8354 (k’k >n5182 (k>n5354(k )

7
k,s1,55,k",83,84

When the occupation numbers matrix is diagonal, we identify n.(k) = n;(k) and

When rotated, N transforms by conjugation by a matrix U € SU(2)

N — UNUT.

There are thus two rotationally invariant contributions to f; , ., (k,k’), with index
structure d, , 6, . and 6, . 0, . . Alternatively, we can use the identity involving Pauli
1°2 3°4 1°4 2°3

matrices that we met in Lecture 6

+0

6 L )
51848985 — 5 [05182 " Os,s, 8185 3354] :

This shows that the two rotationally invariant contributions can be taken to have the
index structure d, ; 6, and o, . -0, , . Comparing with Equation 2.4 in the diagonal
case gives

V(EF)fslsz,s3s4 (k7kl> = F(¢)55152553s4 + G(¢)Uslsz " Osas,°
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5 Appendix
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