
The Elastic Chain





In this lecture we discuss a very simple many body system in which particles are coupled
by Hooke’s Law springs. Nevertheless, the quantization of this system has a lot to teach
us about the appearance of collective excitations.
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1 The Classical System

We study a chain of equal masses connected by springs, moving only in one dimension,
along the chain. The Hamiltonian is

𝐻 =
𝑁

∑
𝑗=1

[
𝑝2

𝑗

2𝑚
+ 𝑘

2
(𝑢𝑗 − 𝑢𝑗+1)2] . (1.1)

We identify 𝑢𝑗 = 𝑢𝑁+𝑗, corresponding to periodic boundary conditions. As usual
[𝑢𝑖, 𝑝𝑗] = 𝑖𝛿𝑖𝑗. To orient ourselves, we solve the classical version of the problem.

1.1 Equations of Motion

You’ve seen this before. The equations of motion are

𝑚𝑢̈𝑗 = 𝑘(𝑢𝑗−1 + 𝑢𝑗+1 − 2𝑢𝑗).

We look for oscillatory solutions with time dependence 𝑢𝑗(𝑡) = 𝑢𝑗𝑒−𝑖𝜔𝑡, arriving at the
matrix eigenvalue problem
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1 The Classical System

−𝜔2

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
⋯

𝑢𝑁−1
𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟
⎠

= 𝑘
𝑚

⎛⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 ⋯ 1
1 −2 1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯
0 ⋅ 1 −2 1
1 0 ⋯ 1 −2

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
⋯

𝑢𝑁−1
𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟
⎠

Matrices of this type are called circulant matrices, and arise here because of the trans-
lational invariance of the system (including the periodic boundary conditions). Their
eigenvectors are given by plane waves 𝑢𝑗 = (𝑧𝑛)𝑗, where 𝑧𝑛 is one of the 𝑁 th roots of
unity i.e. 𝑧𝑁 = 1 or

𝑧𝑛 = exp (2𝜋𝑖𝑛
𝑁

) , 𝑛 = 0, … , 𝑁 − 1.

In fact, to make things a bit more symmetrical, let’s take 𝑁 to be odd and index the 𝑧𝑛
using both positive and negative values of 𝑛

𝑧𝑛 = exp (2𝜋𝑖𝑛
𝑁

) , 𝑛 = −(𝑁 − 1)/2, … , (𝑁 − 1)/2.

We’ll write 𝜂𝑛 ≡ 2𝜋𝑛
𝑁 , so that the eigenstates have the form 𝑢𝑗 = exp(𝑖𝜂𝑛𝑗).

LIGHTBULB Check

By substituting into the equation of motion show that the dispersion relation is

𝜔(𝜂) = √4𝑘
𝑚

|sin 𝜂/2| . (1.2)

Notice that:

1. The frequency vanishes at 𝜂 → 0. This mode corresponds to translation of the
system, for which there is no restoring force.

2. At small 𝜂 the dispersion is linear, as we would expect for sound waves.

A general motion of the system can be represented as a superposition of the normal
modes

𝑢𝑗(𝑡) = 1√
𝑁

∑
|𝑛|≤(𝑁−1)/2

𝑞𝑛(𝑡)𝑒𝑖𝜂𝑛𝑗,

together with the condition 𝑞−𝑛 = 𝑞∗
𝑛 on the complex amplitudes to ensure that 𝑢𝑗 is

real. The amplitudes 𝑞𝑛(𝑡) have time dependence

𝑞𝑛(𝑡) = 𝛼𝑛𝑒−𝑖𝜔(𝜂𝑛)𝑡 + 𝛽𝑛𝑒𝑖𝜔(𝜂𝑛)𝑡
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1.2 Hamiltonian Formulation

for 𝑛 ≠ 0, while for 𝑛 = 0
𝑞0(𝑡) =

√
𝑁(𝑋 + 𝑉 𝑡)

describes the motion of the centre of mass.

1.2 Hamiltonian Formulation

To make contact with quantum physics, let’s look at this problem from the Hamiltonian
perspective. If the 𝑞𝑛 are to be our canonical coordinates, then we should likewise write
the momenta in terms of Fourier modes

𝑝𝑗(𝑡) = 1√
𝑁

∑
|𝑛|≤(𝑁−1)/2

𝜋𝑛(𝑡)𝑒−𝑖𝜂𝑛𝑗, (1.3)

If 𝑢𝑗, 𝑝𝑗 are canonical variables with Poisson Bracket {𝑢𝑗, 𝑝𝑘} = 𝛿𝑗𝑘, then it follows that
{𝑞𝑚, 𝜋𝑛} = 𝛿𝑚𝑛.

LIGHTBULB Check

Show that in terms of the Fourier modes the Hamiltonian Equation 1.1 is

𝐻 = ∑
|𝑛|≤(𝑁−1)/2

[ 1
2𝑚

𝜋𝑛𝜋−𝑛 + 𝑘(1 − cos 𝜂𝑛)𝑞𝑛𝑞−𝑛] . (1.4)

This almost looks like a system of harmonic oscillators. Bear in mind that the 𝑞𝑛 and 𝜋𝑛
are complex. One could, for example, split the amplitudes into their real and imaginary
parts

𝑞𝑛 = 1√
2

(𝑞′
𝑛 + 𝑖𝑞″

𝑛) , 𝑞−𝑛 = 1√
2

(𝑞′
𝑛 − 𝑖𝑞″

𝑛)

𝜋𝑛 = 1√
2

(𝜋′
𝑛 + 𝑖𝜋″

𝑛) , 𝜋−𝑛 = 1√
2

(𝜋′
𝑛 − 𝑖𝜋″

𝑛) , 𝑛 ≥ 0.
(1.5)

The Hamiltonian would then become 𝐻 = 𝐻′ + 𝐻″ with

𝐻′ = ∑
0<𝑛≤(𝑁−1)/2

[ 1
2𝑚

𝜋′
𝑛𝜋′

𝑛 + 𝑘(1 − cos 𝜂𝑛)𝑞′
𝑛𝑞′

𝑛] .

and similarly for 𝐻″. By comparing with the standard form

𝐻SHO = 𝑝2

2𝑚
+ 1

2
𝑚𝜔2𝑥2, (1.6)

we can read off the dispersion relation Equation 1.2. The decomposition Equation 1.5
amounts to working with the real amplitudes of sine and cosine waves. Other options are
possible.
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1 The Classical System

1.3 Complex Coordinates

Sticking with the classical problem, let’s introduce complex coordinates to describe the
two dimensional phase space of a single oscillator

𝑎 = √𝑚𝜔
2

(𝑥 + 𝑖
𝑚𝜔

𝑝) . (1.7)

𝑎 and its conjugate satisfy {𝑎, 𝑎∗} = −𝑖. This definition is chosen so that the Hamiltonian
takes the simple form

𝐻 = 𝜔 |𝑎|2 .
Hamilton’s equations of motion are then

̇𝑎 = {𝑎, 𝐻} = −𝑖𝜔𝑎
̇𝑎∗ = {𝑎∗, 𝐻} = 𝑖𝜔𝑎∗.

with solution 𝑎(𝑡) = 𝑒−𝑖𝜔𝑡𝑎(0) describing circular motion in the complex 𝑎 plane on a
contour of fixed energy.

LIGHTBULB Check

Satisfy yourself — without doing any calculations — that 𝑎(𝑡) defined by Equa-
tion 1.7 goes clockwise in the complex plane.

In the same way, we can introduce the coordinates

𝑎𝑛 = √𝑚𝜔(𝜂𝑛)
2

(𝑞𝑛 + 𝑖
𝑚𝜔(𝜂𝑛)

𝜋−𝑛)

𝑎∗
𝑛 = √𝑚𝜔(𝜂𝑛)

2
(𝑞−𝑛 − 𝑖

𝑚𝜔(𝜂𝑛)
𝜋𝑛) , 𝑛 ≠ 0.

Remember that 𝑞𝑛 = 𝑞∗
−𝑛 and 𝜋𝑛 = 𝜋∗

−𝑛 in order that 𝑢𝑗 and 𝑝𝑗 are real. Note that
𝑛 = 0 is excluded because 𝜔(0) = 0. These coordinates satisfy

{𝑎𝑚, 𝑎∗
𝑛} = −𝑖𝛿𝑚𝑛.

Inverting the definition Equation 1.8 gives

𝑞𝑛 = √ 1
2𝑚𝜔(𝜂𝑛)

(𝑎𝑛 + 𝑎∗
−𝑛)

𝜋𝑛 = −𝑖√𝑚𝜔(𝜂𝑛)
2

(𝑎−𝑛 − 𝑎∗
𝑛) ,

and inserting into the Hamiltonian Equation 1.4 gives

𝐻 = 𝜋2
0

2𝑚
+ ∑

𝑛≠0
|𝑛|≤(𝑁−1)/2

𝜔(𝜂𝑛) |𝑎𝑛|2 ,

with the first term accounting for the (free) centre of mass.
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2 Quantum Oscillators

In the quantum theory, the variables 𝑎, 𝑎† satisfy [𝑎, 𝑎†] = 1 and the Hamiltonian
Equation 1.6 takes the form

𝐻 = 𝜔
2

(𝑎†𝑎 + 𝑎𝑎†) .

Let’s remind ourselves how this formalism solves the problem of finding the eigenstates.
The key observation is that

[𝑎, 𝐻] = 𝜔𝑎,
[𝑎†, 𝐻] = −𝜔𝑎†.

As a result, if |𝜓⟩ is an eigenstate of the Hamiltonian

𝐻|𝜓⟩ = 𝐸|𝜓⟩,

then 𝑎†|𝜓⟩ is an eigenstate with energy 𝐸 + 𝜔

𝐻𝑎†|𝜓⟩ = 𝑎†𝐻|𝜓⟩ + [𝐻, 𝑎†]|𝜓⟩ = (𝐸 + 𝜔) 𝑎†|𝜓⟩.

Similarly 𝑎|𝜓⟩ is an eigenstate with energy 𝐸 − 𝜔, unless |𝜓⟩ = |0⟩, the ground state, in
which case we must have 𝑎|0⟩ = 0.

As a result, all states can be written as

|𝑛⟩ = 1√
𝑛!

(𝑎†)𝑛 |0⟩.

The factor of 1√
𝑛! normalizes the state. The ground state has energy 𝐸0 = 𝜔/2.

2.1 The Quantum Chain

The quantization of the chain is then a piece of cake. We have a system of oscillator
variables satisfying [𝑎𝑚, 𝑎†

𝑛] = 𝛿𝑚𝑛, and writing the Hamiltonian Equation 1.4 in terms
of these variables, paying attention to the order, gives

𝐻 = 𝜋2
0

2𝑚
+ ∑

𝑛≠0
|𝑛|≤(𝑁−1)/2

𝜔(𝜂𝑛)
2

(𝑎†
𝑛𝑎𝑛 + 𝑎𝑛𝑎†

𝑛) .
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2 Quantum Oscillators

From now on we will ignore the centre of mass motion. Exactly the same logic as before
tells us that a general energy eigenstate may be written

|N⟩ = ∏
𝑛≠0

|𝑛|≤(𝑁−1)/2

(𝑎†
𝑛)

𝑁𝑛

√𝑁𝑛!
|0⟩.

The non-negative integers N = (𝑁(1−𝑁)/2, … , 𝑁−1, 𝑁1, … 𝑁(𝑁−1)/2) describe the occupa-
tion numbers of the oscillators. This eigenstate has energy

𝐸(N) = 𝐸0 + ∑
𝑛≠0

|𝑛|≤(𝑁−1)/2

𝜔(𝜂𝑛)𝑁𝑛,

where the ground state energy is

𝐸0 = 1
2

∑
|𝑛|≤(𝑁−1)/2

𝜔(𝜂𝑛). (2.1)

2.2 Oscillator Quanta are Bosons!

A key moment in the birth of Quantum Field Theory was the realization that oscillator
quanta are bosons, meaning that they can be identified with quantum particles having
symmetric wavefunctions. We’ll see this in much more detail in later lectures. For
the moment, let’s just note that both have a basis of states described in terms of the
occupation numbers, which are non-negative integers. In the case of 𝑀 bosons, those
states were written in terms of the single particle wavefunctions 𝜑𝛼(r) of the bosons as

ΨS
𝛼1𝛼2⋯𝛼𝑀

(r1, … , r𝑀) = √
𝑀!

∏𝛼 𝑁𝛼!
𝒮 𝜑𝛼1

(r1)𝜑𝛼2
(r2) ⋯ 𝜑𝛼𝑀

(r𝑀),

where 𝒮 = 1
𝑀! ∑𝑃 𝑃 is the operation of symmetrization, and 𝑁𝛼 denotes the number of

occurrences of 𝜑𝛼(r) in the product, so that 𝑀 = ∑𝛼 𝑁𝛼. It turns out that the Hilbert
space spanned by these states is the same as that spanned by the states |N⟩, if the labels
𝛼 are identified with the momentum labels 𝑛.

It’s important to note that these bosons are totally distinct from the original particles
making up the chain. In fact, or original Hamiltonian Equation 1.1 doesn’t describe
indistinguishable particles as written, as each particle is labelled by its position in the chain,
with a particle only interacting with its two neighbours. Since the particles are assumed
not to change places, there is no way of assigning statistics to their wavefunction.
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2.3 Thermodynamic (𝑁 → ∞) limit

2.3 Thermodynamic (𝑁 → ∞) limit

In studying the properties of matter, we are usually interested in taking the limit of an
infinite system, otherwise known as the 𝑁 → ∞ or thermodynamic limit. At the very
least, we expect the internal energy (as well as other thermodynamic potentials) to be
an extensive quantity, meaning that it is proportional to the ‘size’ of the system, here
measured by the number of sites. Thus we expect the limit

𝑒0 = lim
𝑁→∞

𝐸0
𝑁

to exist. The separation of the 𝜂𝑛 values is 2𝜋/𝑁, so as 𝑁 → ∞ the sum in ground state
energy Equation 2.1 can be replaced with an integral according to the rule

∑
|𝑛|≤(𝑁−1)/2

(⋯)
𝑁→∞
−−−−→ 𝑁 ∫

𝜋

−𝜋

𝑑𝜂
2𝜋

(⋯) .

The factor of 𝑁 tells us that we have an extensive quantity, and

𝑒0 = ∫
𝜋

−𝜋

𝑑𝜂
2𝜋

𝜔(𝜂)
2

= √ 𝑘
2𝑚

∫
𝜋

−𝜋

𝑑𝜂
2𝜋

√1 − cos 𝜂 = 2
𝜋

√ 𝑘
𝑚

.

Alternatively, we may treat the 𝑁 → ∞ limit of the chain as a model of an elastic
continuum of length 𝐿 = 𝑎𝑁. Take 𝑚 = 𝜌𝑎, where 𝜌 is the mass per unit length (1D
density). The 1D elastic modulus is

𝜅 ≡ tension
strain

= 𝑘𝑎

Then 𝑘/𝑚 = 𝜅/(𝜌𝑎2) and
𝐸0
𝐿

= (𝑁
𝐿

)
2 2

𝜋√
𝜅
𝜌

.

The energy per unit length diverges as 𝑁 → ∞. Thus the ground state energy of a
continuous medium is infinite, on account of the infinite number of degrees of freedom it
contains. This is only a problem if one insists on such a description: in practice (at least
in condensed matter) there is always discreteness on the smallest scales.

Apart from the infinite ground state energy, the continuum limit of our harmonic system
is perfectly well defined. Introducing a continuum displacement by 𝑢(𝑥 = 𝑗𝑎) = 𝑢𝑗, the
potential energy can be written

𝑉 = 𝑘
2

𝑁
∑

𝑗
(𝑢𝑗 − 𝑢𝑗+1)2 𝑁→∞

−−−−→ 𝜅
2

∫
𝐿

0
𝑑𝑥 [𝑢′(𝑥)]2 .

If we define the momentum density at each point by 𝜋(𝑥 = 𝑗𝑎) = 𝑝𝑗𝑁/𝐿, then we find
the continuum limit of the canonical commutation relations

[𝑢(𝑥), 𝜋(𝑥′)] = 𝑖𝛿(𝑥 − 𝑥′),
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2 Quantum Oscillators

together with the kinetic energy

𝑇 =
𝑁

∑
𝑗=1

𝑝2
𝑗

2𝑚
= 1

2𝜌
∫

𝐿

0
𝑑𝑥 [𝜋(𝑥)]2 .

Since we are taking the 𝑁 → ∞ limit it’s convenient to define the Fourier modes slightly
differently

𝑢(𝑥) =
∞

∑
𝑛=−∞

𝑢𝑛𝑒𝑖𝑘𝑛𝑥,

where 𝑘𝑛 = 2𝜋𝑛/𝐿. Note that 𝑘𝑛𝑥 = 𝜂𝑛𝑗. We are recycling the notation 𝑢𝑛 now that we
have taken the limit.

If the momentum density 𝜋(𝑥) is then written

𝜋(𝑥) = lim
𝑁→∞

𝑝𝑗=𝑥𝑁/𝐿𝑁
𝐿

= 1
𝐿

∞
∑

𝑛=−∞
𝜋𝑛𝑒−2𝜋𝑖𝑛𝑥/𝐿,

(This differs from Equation 1.3 by 𝜋𝑛 → 𝜋𝑛/
√

𝑁.) we have [𝑢𝑚, 𝜋𝑛] = 𝛿𝑚𝑛.

Our continuum Hamiltonian 𝐻 = 𝑇 + 𝑉 is then written in Fourier components as

𝐻 =
∞

∑
𝑛=−∞

[ 1
2𝜌𝐿

𝜋𝑛𝜋−𝑛 + 𝜅𝐿𝑘2
𝑛

2
𝑢𝑛𝑢−𝑛] .

We can now read off the dispersion relation

𝜔(𝑘) = 𝑐|𝑘|,

where 𝑐 = √𝜅
𝜌 is the speed of sound. Note that the continuum limit has lead to a

linear dispersion relation. This is reasonable: the lattice was the origin of the periodic
dispersion relation Equation 1.2, and it has now disappeared.

Transcribing the definition of the oscillator variables Equation 1.8 gives

𝑎𝑛 = 1√
2

[
√

𝑍𝑘𝐿𝑢𝑛 + 𝑖√
𝑍𝑘𝐿

𝜋−𝑛]

𝑎∗
𝑛 = 1√

2
[
√

𝑍𝑘𝐿𝑢−𝑛 − 𝑖√
𝑍𝑘𝐿

𝜋𝑛] .

where 𝑍 ≡ √𝜅𝜌 is the impedance. After quantization, the Hamiltonian takes the form

𝐻 − 𝐸0 =
∞

∑
𝑛=−∞

𝑐 |𝑘𝑛| 𝑎†
𝑛𝑎𝑛.

This expresses the energy above the ground state in terms of the occupancy of the
oscillator modes.
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2.4 Finite Temperature

2.4 Finite Temperature

At finite temperature 𝑇 the occupancies of the modes have thermal averages given by the
Bose occupation function

⟨𝑁𝑛⟩ = 𝑛B(𝜔(𝜂𝑛)) ≡ 1
exp (𝛽𝜔(𝜂𝑛)) − 1

, (2.2)

where 𝛽 = 1
𝑘B𝑇 . The thermal average of the energy of excited states is then

⟨𝐻 − 𝐸0⟩ = ∑
|𝑛|≤(𝑁−1)/2

𝜔(𝜂𝑛)𝑛B(𝜔(𝜂𝑛)).

This is finite, even in the 𝑁 → ∞ limit, on account of the exponential tail of Equation 2.2.
Remember that this was the problem that the quantum theory was introduced to solve.
At low energies 𝑛B(𝜔) = 1

𝛽𝜔 and the contribution of each mode is

𝜔𝑛B(𝜔)
𝜔→0
−−−→ 𝑘B𝑇 ,

in agreement with the classical equipartition theorem. Were this result to apply at all
energies the thermal energy density of a continuum at finite temperature would be infinite
(the Ultraviolet Catastrophe). It is the existence of Planck’s constant, which appears
in the dimensionless combination ℏ𝛽𝜔 in the Bose occupation function, that allows this
conclusion to be avoided.

2.5 Position Fluctuations

Classically, the ground state configuration of our elastic chain corresponds to a regular
‘crystalline’ arrangement of masses at separation 𝑎, with all 𝑢𝑗 = 0. Mass 𝑗 and mass
𝑘 are then separated by (𝑗 − 𝑘)𝑎 + 𝑢𝑗 − 𝑢𝑘 = (𝑗 − 𝑘)𝑎. Quantum mechanically, 𝑢𝑗 − 𝑢𝑘
fluctuates, even in the ground state. For the notion of a crystal to make sense, these
fluctuations should not be too large. Let’s evaluate them for the elastic chain.

We want to evaluate
⟨0| (𝑢𝑗 − 𝑢𝑘)2 |0⟩.

To do this, we write the displacements in terms of the oscillator variables, and then
evaluate the expectation values in the ground state using the oscillator algebra. Recall
that

𝑢𝑗 = 1√
𝑁

∑
|𝑛|≤(𝑁−1)/2

𝑞𝑛𝑒𝑖𝜂𝑛𝑗, (2.3)

and

𝑞𝑛 = √ 1
2𝑚𝜔(𝜂𝑛)

(𝑎𝑛 + 𝑎†
−𝑛) .
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2 Quantum Oscillators

To evaluate (2.5), we write the two factors (𝑢𝑗 − 𝑢𝑘)(𝑢𝑗 − 𝑢𝑘) in terms of the 𝑎𝑛 and 𝑎†
𝑛.

Contributions to the ground state expectation value arise from terms with 𝑎𝑛 in the left
factor and 𝑎†

𝑛 in the right for some 𝑛. All other terms vanish. This gives

⟨0| (𝑢𝑗 − 𝑢𝑘)2 |0⟩

= 1
2𝑚𝑁

∑
|𝑛|≤(𝑁−1)/2

1
𝜔(𝜂𝑛)

[𝑒𝑖𝜂𝑛𝑗 − 𝑒𝑖𝜂𝑛𝑘] [𝑒−𝑖𝜂𝑛𝑗 − 𝑒−𝑖𝜂𝑛𝑘] .

Taking the 𝑁 → ∞ limit in the sum gives

⟨0| (𝑢𝑗 − 𝑢𝑘)2 |0⟩ = 1
𝑚𝑁

∑
|𝑛|≤(𝑁−1)/2

1 − cos (𝜂𝑛[𝑗 − 𝑘])
𝜔(𝜂𝑛)

= 1
𝑚

∫
𝜋

−𝜋

𝑑𝜂
2𝜋

1 − cos (𝜂[𝑗 − 𝑘])
𝜔(𝜂)

.
(2.4)

The dispersion relation Equation 1.2 makes this integral a little difficult.

Figure 2.1: The integrand in Equation 2.4 for 𝑗 − 𝑘 = 20. What form does it take for
|𝑗 − 𝑘|−1 ≲ 𝜂 ≲ 𝜋?.

12



2.6 Density Fluctuations

LIGHTBULB Check

When |𝑗 − 𝑘| ≫ 1, the integral is dominated by values of |𝑗 − 𝑘|−1 ≲ 𝜂 ≲ 𝜋. In this
limit the dispersion can be linearized

𝜔(𝜂) ∼ √ 𝑘
𝑚

|𝜂|.

Show that we then have

⟨0| (𝑢𝑖 − 𝑢𝑗)
2 |0⟩ ∼ ℓ2

osc
𝜋

log |𝑖 − 𝑗| , as |𝑖 − 𝑗| → ∞ (2.5)

where we have introduced ℓosc = (𝑘𝑚)−1/4, the natural length scale of an oscillator.
If you find this derivation a bit vague, an evaluation of the integral Equation 2.4 is
given in the Section 3.2.

The result Equation 2.5 shows that the uncertainty in the separation of two masses in
the chain increases with their separation. This implies that the ground state of the chain
is not a crystal, but more closely resembles a fluid. It turns out that this conclusion
depends strongly on the dimensionality of the system. In higher dimensions, crystalline
ground states do exist (thankfully).

2.6 Density Fluctuations

An alternative way of quantifying crystalline order is to consider the fluctuations of the
density of particles, defined by

𝜌(𝑥) =
𝑁

∑
𝑗=1

𝛿𝐿(𝑥 − 𝑥𝑗),

where 𝑥𝑗 = 𝑗𝑎 + 𝑢𝑗, and 𝛿𝐿(𝑥) is an 𝐿-periodic version of the 𝛿-function, if we want to
stick with a finite size system. Alternatively, we may consider the Fourier components

𝜌𝑘 =
𝑁

∑
𝑗=1

exp(−𝑖𝑘𝑥𝑗).

Rather than introducing separate notation for the Fourier components of 𝑓(𝑥), it’s
convenient to denote them by 𝑓𝑞, so that

𝑓(𝑥) =
∞

∑
𝑛=−∞

𝑓𝑘𝑛
exp(𝑖𝑘𝑛𝑥), 𝑘𝑛 = 2𝜋𝑛

𝐿

In an ordered configuration 𝑥𝑗 = 𝑗𝑎, we would have

𝜌𝑘𝑛
= {

𝑁 𝑛 = 0 mod 𝑁
0 otherwise.

13



2 Quantum Oscillators

These peaks at values of 𝑘 corresponding to multiples of 2𝜋
𝑎 are nothing but the Bragg peaks

observed in a diffraction experiment, which translates the real space crystal arrangement
into Fourier space. Note that an overall translation of lattice will just change the phase
of the $ �_k$, leaving |𝜌𝑘|2 (proportional to the intensity measured in a diffraction
experiment) unchanged.

How is this picture altered in the quantum mechanical ground state? Given the above
comment, we should evaluate

⟨0|𝜌𝑞𝜌−𝑞|0⟩ =
𝑁

∑
𝑗,𝑘=1

⟨0| exp(𝑖𝑞[𝑥𝑗 − 𝑥𝑘])|0⟩. (2.6)

Upon substituting the mode expansion Equation 2.3 for the displacements, we are left to
evaluate expressions of the form

⟨0| exp(𝜆𝑎 + 𝜇𝑎†)|0⟩.

LIGHTBULB Check

Prove the Hadamard Lemma

𝑒𝐴𝐵𝑒−𝐴 = 𝐵 + [𝐴, 𝐵] + 1
2!

[𝐴, [𝐴, 𝐵]] + 1
3!

[𝐴, [𝐴, [𝐴, 𝐵]]] + …

≡ 𝑒[𝐴,⋅]𝐵,

[Hint: Consider the differential equation in 𝑥 obeyed by 𝑒𝑥𝐴𝐵𝑒−𝑥𝐴]

LIGHTBULB Check

Show that the exponent can be written in a form with all occurrences of 𝑎† to the
left of all 𝑎 (this operation is called normal ordering; we will meet it again).

exp(𝜆𝑎 + 𝜇𝑎†) = exp(𝜆𝜇/2) exp(𝜇𝑎†) exp(𝜆𝑎).

[Hint: Consider the differential equations obeyed by 𝐹1(𝑠) = 𝑒𝑠(𝐴+𝐵) and 𝐹2(𝑠) =
𝑒𝑠𝐴𝑒𝑠𝐵]

LIGHTBULB Check

Use this result to show that

⟨0| exp(𝜆𝑎 + 𝜇𝑎†)|0⟩ = exp(𝜆𝜇/2).

14



2.6 Density Fluctuations

Deploying this strategy for Equation 2.6 gives

⟨0|𝜌𝑞𝜌−𝑞|0⟩ =
𝑁

∑
𝑗,𝑘=1

exp(𝑖𝑞𝑎[𝑗 − 𝑘])

× exp (− 𝑞2

2𝑚𝑁
∑

|𝑛|≤(𝑁−1)/2

1 − cos (𝜂𝑛[𝑗 − 𝑘])
𝜔(𝜂𝑛)

) .

Figure 2.2: Numerical evaluation of ⟨0|𝜌𝑞𝜌−𝑞|0⟩ for ℓosc/𝑎 = 0.2, 𝑁 = 51. Note that the
second Bragg peak is hardly visible.

The second exponent modifies the classical prediction of Bragg peaks. We have encoun-
tered the expression in exponent before in Equation 2.4. Taking the 𝑁 → ∞ limit with
‖𝑗 − 𝑘‖ ≫ 1 as before, we find that in the vicinity of the first Bragg peak at 𝑞 = 2𝜋/𝑎
the summand has the form

exp(𝑖Δ𝑞𝑎[𝑗 − 𝑘]) |𝑗 − 𝑘|−2𝜋ℓ2
osc/𝑎2

,

where Δ𝑞 denotes the deviation of 𝑞 from 2𝜋/𝑎. To find the dependence on Δ𝑞

This leads to the conclusion

⟨0|𝜌𝑞𝜌−𝑞|0⟩ ∼ (Δ𝑞)−1+2𝜋ℓ2
osc/𝑎2

.

15



2 Quantum Oscillators

LIGHTBULB Check

What happens to the higher Bragg peaks?

Thus quantum fluctuations replace the Bragg peaks, an indicator of crystalline order, with
power law divergences. These remnants of order diminish as ℓosc/𝑎 increases, indicating
larger quantum fluctuations. Again, things are different in higher dimensions: the Bragg
peaks survive, albeit reduced in strength, at least for small fluctuations. It is possible,
however, for quantum fluctuations to prevent crystallization in the ground state (i.e. at
zero temperature). Such systems are called quantum liquids. Helium is the prototypical
example: the low atomic mass and relatively weak interactions between atoms mean that
quantum fluctuations are large.
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3 Appendix

3.1 Fourier review

This is a good place to collect some facts about Fourier transforms. We start from the
discrete Fourier transform (DFT), which is a change of basis in a finite dimensional space.
This is what we used in discussing the chain. There are then two ways to pass to the
infinite continuous case described by the Fourier transform.

3.1.1 Discrete Fourier Transform

For a vector 𝑥𝑗 = 1, … 𝑁 (𝑁 taken to be odd), we define the DFT by

𝐹𝑛 =
𝑁

∑
𝑗=1

𝑓𝑗𝑒−𝑖𝜂𝑛𝑗, (3.1)

where 𝜂𝑛 ≡ 2𝜋𝑛
𝑁 , and 𝑛 = −(𝑁 − 1)/2, … , (𝑁 − 1)/2. The key to inverting Equation 3.1

is the observation
(𝑁−1)/2

∑
𝑛=−(𝑁−1)/2

𝑒𝑖𝜂𝑛𝑗 = {
0 𝑗 ≠ 0 mod 𝑁
𝑁 𝑗 = 0 mod 𝑁.

(3.2)

Perhaps the slickest way to to see this is to observe that

𝑧𝑁 − 1 = (𝑧 − 1)(1 + 𝑧 + 𝑧2 + ⋯ 𝑧𝑁−1)

Can you fill in the rest of the argument?

This gives

𝑓𝑗 = 1
𝑁

(𝑁−1)/2

∑
𝑛=−(𝑁−1)/2

𝐹𝑛𝑒𝑖𝜂𝑛𝑗. (3.3)

A more democratic definition would have 1/
√

𝑁 in both definitions Equation 3.1 and
Equation 3.3. This would allow us to regard the DFT as a basis change to an orthonormal
basis of vectors 𝑒(𝑛)

𝑗 = 𝑒𝑖𝜂𝑛𝑗
√

𝑁 , and both the DFT and its inverse would be unitary
transformations.
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3 Appendix

3.1.2 𝑁 → ∞ limit

In this limit the 𝜂𝑛 values become dense in the range (−𝜋, 𝜋], with separation Δ𝜂 = 2𝜋/𝑁,
and we replace the sum in the inverse DFT Equation 3.3 by an integral according to the
prescription

∑
|𝑛|≤(𝑁−1)/2

(⋯)
𝑁→∞
−−−−→ 𝑁 ∫

𝜋

−𝜋

𝑑𝜂
2𝜋

(⋯) ,

giving

𝑓𝑗 = ∫
𝜋

−𝜋

𝑑𝜂
2𝜋

𝐹(𝜂)𝑒𝑖𝜂𝑗.

3.1.3 𝑁 → ∞, with 𝑓𝑗 = 𝑓(𝑗𝐿/𝑁),

Alternatively, regard the 𝑁 → ∞ limit as sampling a function 𝑓(𝑥) ever more finely in
the range (0,L]. Now it’s the DFT, rather than the inverse, that becomes an integral

̂𝑓(𝑘) ≡ ∫
𝐿

0
𝑓(𝑥)𝑒−𝑖𝑘𝑛𝑥 𝑑𝑥,

where 𝑘𝑛 = 2𝜋𝑛/𝐿. Note that 𝑘𝑛𝑥 = 𝜂𝑛𝑗. The pair of transformations is now

̂𝑓𝑘 = ∫
𝐿

0
𝑓(𝑥)𝑒−𝑖𝑘𝑛𝑥 𝑑𝑥

𝑓(𝑥) = 1
𝐿

∑
𝑘

̂𝑓𝑘𝑒𝑖𝑘𝑛𝑥

This is the conventional form of the Fourier series for a function with period 𝐿.

With this definition ̂𝑓𝑘 has an extra dimension of distance (on account of the integral),
which gets removed by the 1/𝐿 in the inverse transform.

The analog of the identity Equation 3.2 is

1
𝐿

∑
𝑘

𝑒𝑖𝑘𝑥 = 𝛿𝐿(𝑥),

where 𝛿𝐿(𝑥) is an 𝐿-periodic version of the 𝛿-function.
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3.1 Fourier review

3.1.4 𝐿 → ∞

Finally we arrive at the Fourier transform, where we take 𝐿 → ∞, so that the inverse
transform in Equation 3.4 becomes an integral too

̂𝑓(𝑘) = ∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑘𝑛𝑥 𝑑𝑥

𝑓(𝑥) = ∫
∞

−∞

̂𝑓(𝑘)𝑒𝑖𝑘𝑛𝑥 𝑑𝑘
2𝜋

.

My preference is for taking this limit at the last possible moment, that is, sticking with
discrete Fourier sums for as long as possible. There are some good(ish) reasons for this

1. Writing ∑𝑘 is easier than 𝐿 ∫ 𝑑𝑘
2𝜋 , because the 𝑘𝑛 = 2𝜋𝑛/𝐿 can be left implicit.

2. Leaving 𝑘 as a subscript means we don’t need the tilde to distinguish 𝑓(𝑥) and 𝑓𝑘.

3. There are times where taking the limit leads to a divergent integral, while the sums
remain finite. This almost always tells us that there is something interesting going
on when we are trying to pass to an infinite system.

3.1.5 Properties of the Fourier Transform

Here are some properties that hold for all of the above.

1. If 𝑓(𝑥) is real 𝑓𝑘 = [𝑓−𝑘]∗.

2. If 𝑓(𝑥) is even, 𝑓𝑘 is even.

3. (Ergo) if 𝑓(𝑥) is real and even, so is 𝑓𝑘.

3.1.6 Fourier Transforms of Products

Frequently we have to transform products, so we use the convolution theorem

𝑓(𝑥)𝑔(𝑥) = 1
𝐿2 ∑

𝑘,𝑘′

𝑓𝑘𝑔𝑘 = 1
𝐿

∑
𝑞

( 1
𝐿

∑
𝑘

𝑓𝑘𝑔𝑞−𝑘) 𝑒𝑖𝑞𝑥,

which shows us that
𝑓(𝑥)𝑔(𝑥)

FT
⟷ 1

𝐿
∑

𝑘
𝑓𝑘𝑔𝑞−𝑘,

the latter being a discrete convolution.
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3 Appendix

Frequently we’ll have to calculate integrals of such products. I record some examples to
give you the general idea

∫
𝐿

0
𝑓(𝑥)𝑔(𝑥) 𝑑𝑥 = 1

𝐿
∑

𝑘
𝑓𝑘𝑔−𝑘

∫
𝐿

0
𝑓 ′(𝑥)𝑔′(𝑥) 𝑑𝑥 = 1

𝐿
∑

𝑘
𝑘2𝑓𝑘𝑔−𝑘

∫
𝐿

0
𝑓(𝑥)𝑔(𝑥)ℎ(𝑥) 𝑑𝑥 = 1

𝐿2 ∑
𝑘1,𝑘2,𝑘3

𝑘1+𝑘2+𝑘3=0

𝑓𝑘1
𝑔𝑘2

ℎ𝑘3

∫
∞

0
𝜙(𝑥)𝑉 (𝑥 − 𝑦)𝜙(𝑦) 𝑑𝑥 𝑑𝑦 = 1

𝐿
∑

𝑞
𝜙−𝑞𝑉𝑞𝜙𝑞

Note that you can be guided to the right number of factors of 1/𝐿 by dimensional
considerations, or from the number of ‘free’ sums over wavevectors.

Finally, we often encounter the situation where we have two (or more) arguments, but
there is only dependence on the difference, for example

𝐹(𝑥, 𝑥′) = 𝑓(𝑥 − 𝑥′).

In this case
𝐹𝑘,𝑘′ = 𝑓𝑘𝛿𝑘,−𝑘′ .

In the 𝐿 → ∞ limit this is

̂𝐹 (𝑘, 𝑘′) = ̂𝑓(𝑘)(2𝜋)𝛿(𝑘 + 𝑘′).

(2𝜋)𝛿(𝑘 + 𝑘′) is the 𝐿 → ∞ limit of 𝐿𝛿𝑘,−𝑘′ as

1
𝐿

∑
𝑘

𝐿𝛿𝑘
𝐿→∞
−−−→ ∫

∞

−∞

𝑑𝑘
2𝜋

2𝜋𝛿(𝑘)

With practice, you will find you are able to write down the right hand sides of expressions
like Equation 3.4 without too much difficulty.

3.1.7 Higher dimensions

This all generalizes to higher dimensions straightforwardly. For example

1
𝐿𝑑 ∑

k
(⋯)

𝐿→∞
−−−→ ∫(⋯) 𝑑k

(2𝜋)𝑑
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3.2 Evaluating Equation 2.4

LIGHTBULB Check

Practice writing out Equation 3.4 in 𝑑 dimensions.

3.2 Evaluating Equation 2.4

We want to evaluate
𝐼(𝑗) ≡ ∫

𝜋

−𝜋

1 − cos (𝜂𝑗)
sin(𝜂/2)

𝑑𝜂

for integer 𝑗. We can write this as

𝐼(𝑗) = ∫
2𝜋

0

1 − 𝑒𝑖𝜂𝑗

sin(𝜂/2)
𝑑𝜂 = −2𝑖 ∫

2𝜋

0
𝑒𝑖𝜂/2 1 − 𝑒𝑖𝜂𝑗

1 − 𝑒𝑖𝜂 𝑑𝜂

because the imaginary part of the integrand vanishes on integration. Now notice that
the integrand involves the geometric series

1 − 𝑒𝑖𝜂𝑗

1 − 𝑒𝑖𝜂 = 1 + 𝑒𝑖𝜂 + ⋯ 𝑒𝑖𝜂(𝑗−1),

so we can do the integrals term by term to give

𝐼(𝑗) = 4
𝑗

∑
𝑛=1

1
𝑛 + 1/2

∼ 4 log 𝑗.

When all factors are replaced, this yields Equation 2.5.
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