The Elastic Chain






In this lecture we discuss a very simple many body system in which particles are coupled
by Hooke’s Law springs. Nevertheless, the quantization of this system has a lot to teach
us about the appearance of collective excitations.







1 The Classical System

We study a chain of equal masses connected by springs, moving only in one dimension,
along the chain. The Hamiltonian is

\U\\ [ Wa ‘ U\z ) Wy

N T2
H= Z [;;; + g(“g - “j+1)2] : (1.1)

We identify u; = up,;, corresponding to periodic boundary conditions. As usual
[u;,p;] = d;;. To orient ourselves, we solve the classical version of the problem.

1.1 Equations of Motion
You've seen this before. The equations of motion are

We look for oscillatory solutions with time dependence u;(t) = uje_“"t, arriving at the
matrix eigenvalue problem



1 The Classical System
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Matrices of this type are called circulant matrices, and arise here because of the trans-
lational invariance of the system (including the periodic boundary conditions). Their
eigenvectors are given by plane waves u; = (2,)7, where z,, is one of the N*! roots of
unity i.e. 2NV =1 or

9
zn:exp<7]r\lfn>, n=0,...,N—1.

In fact, to make things a bit more symmetrical, let’s take N to be odd and index the z,
using both positive and negative values of n

2 —exp (%") = —(N—1)/2,..,(N—1)/2.

We'll write 7, = 27, so that the eigenstates have the form u; = exp(in,j).

@ Check

By substituting into the equation of motion show that the dispersion relation is

win) = \/ff sing/2] (1.2)

Notice that:

1. The frequency vanishes at n — 0. This mode corresponds to translation of the
system, for which there is no restoring force.
2. At small n the dispersion is linear, as we would expect for sound waves.

A general motion of the system can be represented as a superposition of the normal
modes

1 -
uj(t):ﬁ > gut)emd,

In|<(N-1)/2

together with the condition ¢_, = ¢j, on the complex amplitudes to ensure that u; is
real. The amplitudes g,,(¢) have time dependence

0, (t) = a,e”™m)t 1 g eiwin)t


https://en.wikipedia.org/wiki/Circulant_matrix

1.2 Hamiltonian Formulation

for n # 0, while for n =0
0 (t) = VN(X + V)

describes the motion of the centre of mass.

1.2 Hamiltonian Formulation

To make contact with quantum physics, let’s look at this problem from the Hamiltonian
perspective. If the g, are to be our canonical coordinates, then we should likewise write
the momenta in terms of Fourier modes

1 —
Pt = = (Lo, (1.3)
’ \/NIHS(NZ—U/2

If u;, p; are canonical variables with Poisson Bracket {u;, p;} = d;;, then it follows that
{vaﬂ-n} = 6mn'

@ Check

Show that in terms of the Fourier modes the Hamiltonian Equation 1.1 is

1
H= Z |:2m7rn7rn + k(l — CO8 nn>qnq7n . (1.4)
[n|<(N-1)/2

This almost looks like a system of harmonic oscillators. Bear in mind that the ¢, and 7,
are complex. One could, for example, split the amplitudes into their real and imaginary
parts
1 ( /7 + . //) 1 ( / . //)
n — = \dn ) —n = = \4n — 4,
q /2 q q q 2 q q
1 ( / + . //) 1 ( / . //) > 0
T, =— (7, +im), 7w_,=——7(m, —im,), n>0.
V2 V2
The Hamiltonian would then become H = H' + H” with

(1.5)

/ 1 /
H = 3 |Gemm k(= cosn )i,
0<n<(N-1)/2 -2

and similarly for H”. By comparing with the standard form

P2l
H =— 4= 1.6
SHO = o T 5mwTeT, (1.6)
we can read off the dispersion relation Equation 1.2. The decomposition Equation 1.5
amounts to working with the real amplitudes of sine and cosine waves. Other options are
possible.



1 The Classical System
1.3 Complex Coordinates

Sticking with the classical problem, let’s introduce complex coordinates to describe the
two dimensional phase space of a single oscillator

a= \/? <x + miwp) . (1.7)

a and its conjugate satisfy {a,a*} = —i. This definition is chosen so that the Hamiltonian
takes the simple form
H =wlal®.

Hamilton’s equations of motion are then

a={a,H} = —iwa

a* ={a*, H} = iwa*.
with solution a(t) = e~*'a(0) describing circular motion in the complex a plane on a
contour of fixed energy.

@ Check

Satisfy yourself — without doing any calculations — that a(t) defined by Equa-
tion 1.7 goes clockwise in the complex plane.

In the same way, we can introduce the coordinates

o = mw;“(q_mwm) n 0.

Remember that ¢, = ¢*,, and m, = 72, in order that u; and p; are real. Note that
n = 0 is excluded because w(0) = 0. These coordinates satisfy

{am’ a*n} = 7l5mn
Inverting the definition Equation 1.8 gives

2mw(n,,)

m = =iy T (o )

and inserting into the Hamiltonian Equation 1.4 gives
2

_ "o 2
H= % + T%(:) w(nn) |an| )

In|<(N-1)/2

with the first term accounting for the (free) centre of mass.



2 Quantum Oscillators

In the quantum theory, the variables a, a' satisfy [a,a'] = 1 and the Hamiltonian
Equation 1.6 takes the form

Hz%(aTa—i-aaT).

Let’s remind ourselves how this formalism solves the problem of finding the eigenstates.
The key observation is that

la, H|] = wa,

[af, H] = —wal.

As a result, if [¢) is an eigenstate of the Hamiltonian

Hly) = El),

then af|¢) is an eigenstate with energy E 4 w
Ha'ly) = a" H|Y) + [H, al][p)) = (E +w) a’ly).

Similarly a|y) is an eigenstate with energy F — w, unless |[¢)) = |0), the ground state, in
which case we must have a|0) = 0.

As a result, all states can be written as

n) = jﬁ (ah)" [0).

The factor of ﬁ normalizes the state. The ground state has energy E, = w/2.

2.1 The Quantum Chain

The quantization of the chain is then a piece of cake. We have a system of oscillator
variables satisfying [am,ah] =6, , and writing the Hamiltonian Equation 1.4 in terms
of these variables, paying attention to the order, gives

H= Mo + Z w(1,) (ailan + anaib) )



2 Quantum Oscillators

From now on we will ignore the centre of mass motion. Exactly the same logic as before
tells us that a general energy eigenstate may be written

) Vn
N = I (@) 10).
n#0 n*
inl<(N-1)/2

The non-negative integers N = (Nqu)/Q, vy N_{, Ny, o N(N—l)/2) describe the occupa-
tion numbers of the oscillators. This eigenstate has energy

n#0
In|<(N-1)/2

where the ground state energy is

Eo=1 3 win). (2.1)

[n|<(N-1)/2

2.2 Oscillator Quanta are Bosons!

A key moment in the birth of Quantum Field Theory was the realization that oscillator
quanta are bosons, meaning that they can be identified with quantum particles having
symmetric wavefunctions. We’ll see this in much more detail in later lectures. For
the moment, let’s just note that both have a basis of states described in terms of the
occupation numbers, which are non-negative integers. In the case of M bosons, those
states were written in terms of the single particle wavefunctions ¢, (r) of the bosons as

[ M!
\Ijzlag--uM(rl: 7rM) = W‘S@al (rl)SOOQ (1‘2) SOaM(rM)v

where § = ﬁ > P is the operation of symmetrization, and N, denotes the number of
occurrences of ¢, (r) in the product, so that M = 3_ N,. It turns out that the Hilbert
space spanned by these states is the same as that spanned by the states |N), if the labels
« are identified with the momentum labels n.

It’s important to note that these bosons are totally distinct from the original particles
making up the chain. In fact, or original Hamiltonian Equation 1.1 doesn’t describe
indistinguishable particles as written, as each particle is labelled by its position in the chain,
with a particle only interacting with its two neighbours. Since the particles are assumed
not to change places, there is no way of assigning statistics to their wavefunction.



2.3 Thermodynamic (N — o) limit
2.3 Thermodynamic (N — o0) limit

In studying the properties of matter, we are usually interested in taking the limit of an
infinite system, otherwise known as the N — oo or thermodynamic limit. At the very
least, we expect the internal energy (as well as other thermodynamic potentials) to be
an extensive quantity, meaning that it is proportional to the ‘size’ of the system, here
measured by the number of sites. Thus we expect the limit

to exist. The separation of the 7, values is 27/ N, so as N — oo the sum in ground state
energy Equation 2.1 can be replaced with an integral according to the rule
N—oo 4 d77
In|<(N-1)/2 -

The factor of N tells us that we have an extensive quantity, and

Tdnw(n dn
ey = 2: 2 \/ / —+/1—cosn=— \/

Alternatively, we may treat the N — oo limit of the chain as a model of an elastic
continuum of length L = aN. Take m = pa, where p is the mass per unit length (1D
density). The 1D elastic modulus is

__ tension

= ka

" strain

Then k/m = k/(pa?) and

Ey (N\*2 [k

L (f) ™\ p
The energy per unit length diverges as N — oco. Thus the ground state energy of a
continuous medium is infinite, on account of the infinite number of degrees of freedom it
contains. This is only a problem if one insists on such a description: in practice (at least
in condensed matter) there is always discreteness on the smallest scales.

Apart from the infinite ground state energy, the continuum limit of our harmonic system
is perfectly well defined. Introducing a continuum displacement by u(z = ja) = u;, the
potential energy can be written

k N 9 N2 K L , 2

V= §Z(Uj_uj+1> —3 A dz [u'(z)]”.
j

If we define the momentum density at each point by 7(z = ja) = p;N /L, then we find

the continuum limit of the canonical commutation relations

[u(z), m(2")] = i6(z — 2),



2 Quantum Oscillators

together with the kinetic energy

T:Zlefo da [n(2)]?.

=1 2p

Since we are taking the N — oo limit it’s convenient to define the Fourier modes slightly
differently

O .
u(z) = Z u,,eFn®
n=—oo

where k,, = 2mn/L. Note that k,z = 7,,j. We are recycling the notation u,, now that we
have taken the limit.

If the momentum density 7(z) is then written

= N 1 & A
7T<$> — ]\};H;OPJHU% — Z Z 7Tn6727rznx/L’

n=—oo

(This differs from Equation 1.3 by 7, — 7,,/v'N.) we have [u,,,T,] = 6

m? mn-*

Our continuum Hamiltonian H = T + V'is then written in Fourier components as

> 1 kLk2
H= Z [Mﬂnﬂn+ > unun]

n=—oo

We can now read off the dispersion relation
w(k) = c|kl,

where ¢ = % is the speed of sound. Note that the continuum limit has lead to a
linear dispersion relation. This is reasonable: the lattice was the origin of the periodic
dispersion relation Equation 1.2, and it has now disappeared.

Transcribing the definition of the oscillator variables Equation 1.8 gives

1 i
a, = — |VZkLu, + ———n_,
V2 [ \/ZkLW ]

1 1
a), = — |VZkLu_,, — ——=m,, | .
where Z = /kp is the impedance. After quantization, the Hamiltonian takes the form

o0

H—-E,= Z clk, | alan.

n=—oo

This expresses the energy above the ground state in terms of the occupancy of the
oscillator modes.

10



2.4 Finite Temperature
2.4 Finite Temperature

At finite temperature 7" the occupancies of the modes have thermal averages given by the
Bose occupation function

1
€xp (/Bw(nn)) —1

(N) = np(w(n,)) = (2.2)

where 8 = k]%:r The thermal average of the energy of excited states is then

In|<(N-1)/2

This is finite, even in the N — oo limit, on account of the exponential tail of Equation 2.2.
Remember that this was the problem that the quantum theory was introduced to solve.
At low energies np(w) = B%u and the contribution of each mode is

w—0
wng(w) — kT,

in agreement with the classical equipartition theorem. Were this result to apply at all
energies the thermal energy density of a continuum at finite temperature would be infinite
(the Ultraviolet Catastrophe). It is the existence of Planck’s constant, which appears
in the dimensionless combination Afw in the Bose occupation function, that allows this
conclusion to be avoided.

2.5 Position Fluctuations

Classically, the ground state configuration of our elastic chain corresponds to a regular
‘crystalline’ arrangement of masses at separation a, with all u; = 0. Mass j and mass
k are then separated by (j — k)a + u; —uy, = (j — k)a. Quantum mechanically, u; — u
fluctuates, even in the ground state. For the notion of a crystal to make sense, these
fluctuations should not be too large. Let’s evaluate them for the elastic chain.

We want to evaluate )
(0] (uj — uk) |0).
To do this, we write the displacements in terms of the oscillator variables, and then

evaluate the expectation values in the ground state using the oscillator algebra. Recall
that

u g™, (2.3)

1
e \ﬁ\f nlsz

(N-1)/2
and

q, = (an + aT_n) .

2ma(1,,)

11
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2 Quantum Oscillators

To evaluate (2.5), we write the two factors (u; — uy)(u; — uy,) in terms of the a, and ah.

Contributions to the ground state expectation value arise from terms with a, in the left
factor and ), in the right for some n. All other terms vanish. This gives

(O] (u; —uy,)*[0)

1 [einnj o einnk] [e—innj o e—innk] .

= omN

In|<(N—1)/2 w(1y,)

Taking the N — oo limit in the sum gives

2 1 1 — cos (,,[j — k])
(0] (uj—u ) 0) = —
k NMinisls ) (2.4)
_ 1 [Tdnl—cos(nlj— k)
27 w(n) '

The dispersion relation Equation 1.2 makes this integral a little difficult.

||

30-

25 1

20 1

1—cos(20n)
sin(n/2)
th

Figure 2.1: The integrand in Equation 2.4 for j — k = 20. What form does it take for
j—k ' S A

12



2.6 Density Fluctuations

@ Check

When |j — k| > 1, the integral is dominated by values of |j — k\_l < n <. In this
limit the dispersion can be linearized

w(n) ~ \/Zln!-

2 2. o o
(O] (u; ;)" 0) ~ = logli — 5], as fi—j| o0 (2.5)

Show that we then have

where we have introduced ¢ .. = (k‘m)fl/ % the natural length scale of an oscillator.
If you find this derivation a bit vague, an evaluation of the integral Equation 2.4 is

given in the Section 3.2.

The result Equation 2.5 shows that the uncertainty in the separation of two masses in
the chain increases with their separation. This implies that the ground state of the chain
is not a crystal, but more closely resembles a fluid. It turns out that this conclusion
depends strongly on the dimensionality of the system. In higher dimensions, crystalline
ground states do exist (thankfully).

2.6 Density Fluctuations

An alternative way of quantifying crystalline order is to consider the fluctuations of the
density of particles, defined by

7=1
where z; = ja + u;, and 6, (z) is an L-periodic version of the é-function, if we want to
stick with a finite size system. Alternatively, we may consider the Fourier components

N
pr = ) exp(—ikx;).
j=1
Rather than introducing separate notation for the Fourier components of f(x), it’s

convenient to denote them by f,, so that

fz) = i fr, explikyz), k="

n=—oo

In an ordered configuration z; = ja, we would have

B N n=0 modN
Phn = 0 otherwise.

13



2 Quantum Oscillators

These peaks at values of k corresponding to multiples of %’r are nothing but the Bragg peaks

observed in a diffraction experiment, which translates the real space crystal arrangement
into Fourier space. Note that an overall translation of lattice will just change the phase
of the $ _k$, leaving |p,|> (proportional to the intensity measured in a diffraction
experiment) unchanged.

How is this picture altered in the quantum mechanical ground state? Given the above
comment, we should evaluate

N
(Olpgp_y10) = > (0] expligla; — ,])[0). (2.6)

7,k=1

Upon substituting the mode expansion Equation 2.3 for the displacements, we are left to
evaluate expressions of the form

(0 exp(Aa + pa')|0).

@ Check

Prove the Hadamard Lemma

eABe ™ = B+ [A, B] + % [A,[A, B]] + 1

3 14 (A [A, BI £ ...

= el41B,

[Hint: Consider the differential equation in = obeyed by e®4 Be=®4]

@ Check

Show that the exponent can be written in a form with all occurrences of a' to the
left of all a (this operation is called normal ordering; we will meet it again).

exp(Aa + pa’) = exp(Au/2) exp(pa’) exp(Aa).

[Hint: Consider the differential equations obeyed by F,(s) = e*4*5) and F,(s) =
GSAESB]

@ Check

Use this result to show that

(0] exp(Aa + pa®)[0) = exp(Au/2).

14



2.6 Density Fluctuations

Deploying this strategy for Equation 2.6 gives

N
(Olpgp_yl0) = > expligalj — k)
jk=1

Xexp(_ ¢y 1—cos<nn[j—k]>>,

2mN In|<(N—1)/2 w(1y)

17.5 1

15.0

12.5 -

10.0 1

~
i

(0]pgp—q|0)/N

E

_

0 5 10 15 20 25

ga

Figure 2.2: Numerical evaluation of (0|p,p_,[0) for £, /a = 0.2, N = 51. Note that the
second Bragg peak is hardly visible.

=
=

The second exponent modifies the classical prediction of Bragg peaks. We have encoun-
tered the expression in exponent before in Equation 2.4. Taking the N — oo limit with
|7 — k| > 1 as before, we find that in the vicinity of the first Bragg peak at ¢ = 27/a
the summand has the form

exp(idgalj — k) |5 — k| el

where Aq denotes the deviation of ¢ from 27/a. To find the dependence on Ag

This leads to the conclusion

— w02 /a2
(0] pgp_yl0) ~ (Ag) ' H2mlese/ ™

15



2 Quantum Oscillators

@ Check

What happens to the higher Bragg peaks?

Thus quantum fluctuations replace the Bragg peaks, an indicator of crystalline order, with
power law divergences. These remnants of order diminish as ¢_../a increases, indicating
larger quantum fluctuations. Again, things are different in higher dimensions: the Bragg
peaks survive, albeit reduced in strength, at least for small fluctuations. It is possible,
however, for quantum fluctuations to prevent crystallization in the ground state (i.e. at
zero temperature). Such systems are called quantum liquids. Helium is the prototypical
example: the low atomic mass and relatively weak interactions between atoms mean that
quantum fluctuations are large.

16



3 Appendix

3.1 Fourier review

This is a good place to collect some facts about Fourier transforms. We start from the
discrete Fourier transform (DFT), which is a change of basis in a finite dimensional space.
This is what we used in discussing the chain. There are then two ways to pass to the
infinite continuous case described by the Fourier transform.

3.1.1 Discrete Fourier Transform

For a vector x; = 1,... N (N taken to be odd), we define the DFT by

N
F, =Y femi, (3.1)
=1
where n,, = 222 and n = —(N —1)/2,..., (N —1)/2. The key to inverting Equation 3.1

N
is the observation ( )/
N-1)/2
N 0 4+£0 d N
Y emi= { ‘7.# e (3.2)
n=—(N—1)/2 N ] = 0 mod N.

Perhaps the slickest way to to see this is to observe that
N -1=(z—-1)A+z+2%2+-- 2N

Can you fill in the rest of the argument?

This gives
| (N2
fi=% > F,emi. (3.3)
n=—(N—1)/2

A more democratic definition would have 1/v/N in both definitions Equation 3.1 and
Equation 3.3. This would allow us to regard the DFT as a basis change to an orthonormal

basis of vectors e\ = ej%j, and both the DFT and its inverse would be unitary

J
transformations.

17
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3 Appendix

3.1.2 N — oo limit

In this limit the 7, values become dense in the range (—m, 7], with separation Anp = 27 /N,
and we replace the sum in the inverse DFT Equation 3.3 by an integral according to the
prescription

() 2= N dan

[n|<(N-1)/2

()’

2
—T
giving

Trd77 i
P

3.1.3 N — oo, with f, = f(jL/N),

Alternatively, regard the N — oo limit as sampling a function f(z) ever more finely in
the range (0,L]. Now it’s the DFT, rather than the inverse, that becomes an integral

L
fi = [ fa)e e da,
0
where k,, = 2mn/L. Note that k,x = n,,j. The pair of transformations is now
fom [ttt do
0
1 F ik, x
flx) = i3 Zk: fret™
This is the conventional form of the Fourier series for a function with period L.

With this definition fk has an extra dimension of distance (on account of the integral),
which gets removed by the 1/L in the inverse transform.

The analog of the identity Equation 3.2 is

1 )
z Z kT = 5L(x>7
k

where 0 (z) is an L-periodic version of the J-function.

18



3.1 Fourier review
314 L —

Finally we arrive at the Fourier transform, where we take L — oo, so that the inverse
transform in Equation 3.4 becomes an integral too

~

f%%—/mf@k”““m

722 ~ ) dk
f@z/fwww%

My preference is for taking this limit at the last possible moment, that is, sticking with
discrete Fourier sums for as long as possible. There are some good(ish) reasons for this

1. Writing >, is easier than L [ 4 because the k, = 2rn/L can be left implicit.
2. Leaving k as a subscript means we don’t need the tilde to distinguish f(z) and f;.

3. There are times where taking the limit leads to a divergent integral, while the sums
remain finite. This almost always tells us that there is something interesting going
on when we are trying to pass to an infinite system.

3.1.5 Properties of the Fourier Transform

Here are some properties that hold for all of the above.

1. If f(x) is real f,, = [f,]"
2. If f(z) is even, f, is even.

3. (Ergo) if f(z) is real and even, so is fj.

3.1.6 Fourier Transforms of Products

Frequently we have to transform products, so we use the convolution theorem

1 1 1 )

f(z)g(z) = 7z kagk -7 Z (L kagq—k:) e,
k,k’ q k

which shows us that

F@e(@) & 257 fuggn
k

the latter being a discrete convolution.

19
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3 Appendix

Frequently we’ll have to calculate integrals of such products. I record some examples to
give you the general idea

L 1
/0 f(z)g(z)dx = i3 Zk: Je9-k
L 1
| r @@= g R
L
[ r@g@h@dr= 15 3 fgh,
0

ky+kotks=0

[ v —nowardy = 1 Z¢
0

Note that you can be guided to the right number of factors of 1/L by dimensional
considerations, or from the number of ‘free’ sums over wavevectors.

Finally, we often encounter the situation where we have two (or more) arguments, but
there is only dependence on the difference, for example

F(z,z") = f(x —2’).

In this case
Fk,k/ = fk5k,—k’-

In the L — oo limit this is

F(k, k') = f(k)(2m)3(k + k).
(2m)6(k + k') is the L — oo limit of Lo 4 as

1 L—oco dk

With practice, you will find you are able to write down the right hand sides of expressions
like Equation 3.4 without too much difficulty.

3.1.7 Higher dimensions

This all generalizes to higher dimensions straightforwardly. For example

L—)oo dk
L Z () (2m)d

20



3.2 Evaluating Equation 2.4

@ Check

Practice writing out Equation 3.4 in d dimensions.

3.2 Evaluating Equation 2.4

We want to evaluate

1 cos ()
“”:/ﬂ sm(n2) "

for integer j. We can write this as

o . o .
I1(5) = / 1o - dn = —Qi/ cin2l =€ dn
b sin(n/2) A 1—ein

because the imaginary part of the integrand vanishes on integration. Now notice that
the integrand involves the geometric series

1— e

o = 14 e 4 ... einld=1)

so we can do the integrals term by term to give

. 1 .
I<]>:4Zn+l/2 ~ 4logj.

n=1

When all factors are replaced, this yields Equation 2.5.
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